我们现在关于物体运动的观念来自于伽利略和牛顿。在他们之前,人们相信亚里士多德,他说物体的自然状态是静止的,并且只在受到力或冲击作用时才运动。这样,重的物体比轻的物体下落得更快,因为它受到更大的力将其拉向地球。
亚里士多德的传统观点还以为,人们用纯粹思维可以找出制约宇宙的定律:不必要用观测去检验它。所以,伽利略是第一个想看看不同重量的物体是否确实以不同速度下落的人。据说,伽利略从比萨斜塔上将重物落下,从而证明了亚里士多德的信念是错的。
这故事几乎不可能是真的,但是伽利略的确做了一些等同的事——将不同重量的球从光滑的斜面上滚下。这情况类似于重物的垂直下落,只是因为速度小而更容易观察而已。
......
伽利略的测量被牛顿用来作为他的运动定律的基础。在伽利略的实验中,当物体从斜坡上滚下时,它一直受到不变的外力(它的重量),其效应是它被恒定地加速。这表明,力的真正效应总是改变物体的速度,而不是像原先想像的那样,仅仅使之运动。同时,它还意味着,只要一个物体没有受到外力,它就会以同样的速度保持直线运动。这个思想是第一次被牛顿在1687年出版的《数学原理》一书中明白地叙述出来,并被称为牛顿第一定律。
......
亚里士多德和伽利略——牛顿观念的巨大差别在于,亚里士多德相信存在一个优越的静止状态,任何没有受到外力和冲击的物体都采取这种状态。特别是他以为地球是静止的。但是从牛顿定律引出,并不存在一个静止的唯一标准。人们可以讲,物体A静止而物体B以不变的速度相对于物体A运动,或物体B静止而物体A运动,这两种讲法是等价的。
例如,我们暂时将地球的自转和它绕太阳的公转置之一旁,则可以讲地球是静止的,一列火车以每小时90英哩的速度向北前进,或火车是静止的,而地球以每小时90英哩的速度向南运动。如果一个人在火车上以运动的物体做实验,所有牛顿定律都成立。例如,在火车上打乓乒球,将会发现,正如在铁轨边上一张台桌上一样,乓乒球服从牛顿定律,所以无法得知是火车还是地球在运动。
缺乏静止的绝对的标准表明,人们不能决定在不同时间发生的两个事件是否发生在空间的同一位置。例如,假定在火车上我们的乓乒球直上直下地弹跳,在一秒钟前后两次撞到桌面上的同一处。在铁轨上的人来看,这两次弹跳发生在大约相距100米的不同的位置,因为在这两回弹跳的间隔时间里,火车已在铁轨上走了这么远。这样,绝对静止的不存在意味着,不能像亚里士多德相信的那样,给事件指定一个绝对的空间的位置。
事件的位置以及它们之间的距离对于在火车上和铁轨上的人来讲是不同的,所以没有理由以为一个人的处境比他人更优越。
牛顿对绝对位置或被称为绝对空间的不存在感到非常忧虑,因为这和他的绝对上帝的观念不一致。事实上,即使绝对空间的不存在被隐含在他的定律中,他也拒绝接受。
因为这个非理性的信仰,他受到许多人的严厉批评,最有名的是贝克莱主教,他是一个相信所有的物质实体、空间和时间都是虚妄的哲学家。当人们将贝克莱的见解告诉著名的约翰逊博士时,他用脚尖踢到一块大石头上,并大声地说:“我要这样驳斥它!”
亚里士多德和牛顿都相信绝对时间。也就是说,他们相信人们可以毫不含糊地测量两个事件之间的时间间隔,只要用好的钟,不管谁去测量,这个时间都是一样的。时间相对于空间是完全分开并独立的。这就是大部份人当作常识的观点。然而,我们必须改变这种关于空间和时间的观念。虽然这种显而易见的常识可以很好地对付运动甚慢的诸如苹果、行星的问题,但在处理以光速或接近光速运动的物体时却根本无效。
光以有限但非常高的速度传播的这一事实,由丹麦的天文学家欧尔?克里斯琴森?罗麦于1676年第一次发现。他观察到,木星的月亮不是以等时间间隔从木星背后出来,不像如果月亮以不变速度绕木星运动时人们所预料的那样。当地球和木星都绕着太阳公转时,它们之间的距离在变化着。罗麦注意到我们离木星越’远则木星的月食出现得越晚。他的论点是,因为当我们离开更远时,光从木星月亮那儿要花更长的时间才能达到我们这儿。然而,他测量到的木星到地球的距离变化不是非常准确,所以他的光速的数值为每秒14英哩,而现在的值为每秒186000英哩。尽管如此,罗麦不仅证明了光以有限速度运动,并且测量了光速,他的成就是卓越的——要知道,这一切都是在牛顿发表《数学原理》之前11年进行的。
直到1865年,当英国的物理学家詹姆士?马克斯韦成功地将当时用以描述电力和磁力的部分理论统一起来以后,才有了光传播的真正的理论。马克斯韦方程预言,在合并的电磁场中可以存在波动的微扰,它们以固定的速度,正如池塘水面上的涟漪那样运动。
如果这些波的波长(两个波峰之间的距离)为1米或更长一些,这就是我们所谓的无线电波。更短波长的波被称做微波(几个厘米)或红外线(长于万分之一厘米)。可见光的波长在百万分之40到百万分之80厘米之间。更短的波长被称为紫外线、X射线和伽玛射线。
马克斯韦理论预言,无线电波或光波应以某一固定的速度运动。但是牛顿理论已经摆脱了绝对静止的观念,所以如果假定光是以固定的速度传播,人们必须说清这固定的速度是相对于何物来测量的。这样人们提出,甚至在“真空”中也存在着一种无所不在的称为“以太”的物体。正如声波在空气中一样,光波应该通过这以太传播,所以光速应是相对于以太而言。相对于以太运动的不同观察者,应看到光以不同的速度冲他们而来,但是光对以太的速度是不变的。特别是当地球穿过以太绕太阳公转时,在地球通过以太运动的方向测量的光速(当我们对光源运动时)应该大于在与运动垂直方向测量的光速(当我们不对光源运动时)。1887年,阿尔贝特?麦克尔逊(后来成为美国第一个物理诺贝尔奖获得者)和爱德华?莫雷在克里夫兰的卡思应用科学学校进行了非常仔细的实验。他们将在地球运动方向以及垂直于此方向的光速进行比较,使他们大为惊奇的是,他们发现这两个光速完全一样!
在1887年到1905年之间,人们曾经好几次企图去解释麦克尔逊——莫雷实验。最著名者为荷兰物理学家亨得利克?罗洛兹,他是依据相对于以太运动的物体的收缩和钟变慢的机制。然而,一位迄至当时还不知名的瑞士专利局的职员阿尔贝特?爱因斯坦,在1905年的一篇著名的论文中指出,只要人们愿意抛弃绝对时间的观念的话,整个以太的观念则是多余的。几个星期之后,一位法国最重要的数学家亨利?彭加勒也提出类似的观点。爱因斯坦的论证比彭加勒的论证更接近物理,因为后者将此考虑为数学问题。通常这个新理论是归功于爱因斯坦,但彭加勒的名字在其中起了重要的作用。
这个被称之为相对论的基本假设是,不管观察者以任何速度作自由运动,相对于他们而言,科学定律都应该是一样的。这对牛顿的运动定律当然是对的,但是现在这个观念被扩展到包括马克斯韦理论和光速:不管观察者运动多快,他们应测量到一样的光速。
这简单的观念有一些非凡的结论。可能最著名者莫过于质量和能量的等价,这可用爱因斯坦著名的方程E=mc^2来表达(这儿E是能量,m是质量,c是光速),以及没有任何东西能运动得比光还快的定律。由于能量和质量的等价,物体由于它的运动所具的能量应该加到它的质量上面去。换言之,要加速它将变得更为困难。这个效应只有当物体以接近于光速的速度运动时才有实际的意义。例如,以10%光速运动的物体的质量只比原先增加了0.5%,而以90%光速运动的物体,其质量变得比正常质量的2倍还多。当一个物体接近光速时,它的质量上升得越来越快,它需要越来越多的能量才能进一步加速上去。
实际上它永远不可能达到光速,因为那时质量会变成无限大,而由质量能量等价原理,这就需要无限大的能量才能做到。由于这个原因,相对论限制任何正常的物体永远以低于光速的速度运动。只有光或其他没有内禀质量的波才能以光速运动。
相对论的一个同等卓越的成果是,它变革了我们对空间和时间的观念。在牛顿理论中,如果有一光脉冲从一处发到另一处,(由于时间是绝对的)不同的观测者对这个过程所花的时间不会有异议,但是他们不会在光走过的距离这一点上取得一致的意见(因为空间不是绝对的)。由于光速等于这距离除以所花的时间,不同的观察者就测量到不同的光速。另一方面,在相对论中,所有的观察者必须在光是以多快的速度运动上取得一致意见。然而,他们在光走过多远的距离上不能取得一致意见。所以现在他们对光要花多少时间上也不会取得一致意见。(无论如何,光所花的时间正是用光速——这一点所有的观察者都是一致的——去除光所走的距离——这一点对他们来说是不一致的。)总之,相对论终结了绝对时间的观念!这样,每个观察者都有以自己所携带的钟测量的时间,而不同观察者携带的同样的钟的读数不必要一致。
....
爱因斯坦提出了革命性的思想,即引力不像其他种类的力,而只不过是空间——时间不是平坦的这一事实的后果。正如早先他假定的那样,空间——时间是由于在它中间的质量和能量的分布而变弯曲或“翘曲”的。像地球这样的物体并非由于称为引力的力使之沿着弯曲轨道运动,而是它沿着弯曲空间中最接近于直线的称之为测地线的轨迹运动。一根测地线是两邻近点之间最短(或最长)的路径。例如,地球的表面是一弯曲的二维空间。地球上的测地线称为大圆,是两点之间最近的路(图2.8)。由于测地线是两个机场之间的最短程,这正是领航员叫飞行员飞行的航线。在广义相对论中,物体总是沿着四维空间——时间的直线走。尽管如此,在我们的三维空间看起来它是沿着弯曲的途径(这正如同看一架在非常多山的地面上空飞行的飞机。虽然它沿着三维空间的直线飞,在二维的地面上它的影子却是沿着一条弯曲的路径)。
图2.8太阳的质量引起空间——时间的弯曲,使得在四维的空间——时间中地球虽然沿着直线的轨迹,它却让我们在三维空间中看起来是沿着一个圆周运动。事实上,广义相对论预言的行星轨道几乎和牛顿引力理论所预言的完全一致。然而,对于水星,这颗离太阳最近、受到引力效应最强、并具有被拉得相当长的轨道的行星,广义相对论预言其轨道椭圆的长轴绕着太阳以大约每1万年1度的速率进动。这个效应虽然小,但在1915年前即被人们注意到了,并被作为爱因斯坦理论的第一个验证。近年来,其他行星的和牛顿理论预言的甚至更小的轨道偏差也已被雷达测量到,并且发现和广义相对论的预言相符。
......
摘自<时间简史>霍金



雷达卡




京公网安备 11010802022788号







