楼主: Lisrelchen
1389 8

Scientific Computing with MATLAB, Second Edition [推广有奖]

  • 0关注
  • 62粉丝

VIP

已卖:4194份资源

院士

67%

还不是VIP/贵宾

-

TA的文库  其他...

Bayesian NewOccidental

Spatial Data Analysis

东西方数据挖掘

威望
0
论坛币
50288 个
通用积分
83.6306
学术水平
253 点
热心指数
300 点
信用等级
208 点
经验
41518 点
帖子
3256
精华
14
在线时间
766 小时
注册时间
2006-5-4
最后登录
2022-11-6

楼主
Lisrelchen 发表于 2016-1-14 10:40:44 |AI写论文
1论坛币
https://www.crcpress.com/Scientific-Computing-with-MATLAB-Second-Edition/Xue-Chen/9781498757775



关键词:Scientific computing Edition Comput editio

本帖被以下文库推荐

沙发
Nicolle 学生认证  发表于 2016-1-18 02:48:30

3.1

提示: 作者被禁止或删除 内容自动屏蔽

藤椅
Nicolle 学生认证  发表于 2016-1-18 02:50:45
提示: 作者被禁止或删除 内容自动屏蔽

板凳
Nicolle 学生认证  发表于 2016-1-18 02:52:25
提示: 作者被禁止或删除 内容自动屏蔽

报纸
igs816 在职认证  发表于 2017-2-23 14:27:52

地板
Lisrelchen 发表于 2017-2-27 07:13:59
  1. Example 5.1 For a given time domain function f(t) = t2e
  2. −2t sin(t + π), compute its
  3. Laplace transform function F(s).
  4. Solution From the original problem, it can be seen that the time domain variable t should
  5. be declared first. With the MATLAB statements, the function f(t) can be specified. Then,
  6. the laplace() function can be used to derive the Laplace transform of the original function
  7. >> syms t; f=t^2*exp(-2*t)*sin(t+pi); F=laplace(f) % the 3-step procedure
复制代码

7
Lisrelchen 发表于 2017-2-27 07:26:00
  1. Example 5.2 Assume that the original function is given by f(x) = x2e
  2. −2x sin(x+π),
  3. compute the Laplace transform, and then, take inverse Laplace transform and see whether
  4. the original function can be recovered.
  5. Solution Similarly, the laplace() function can still be used
  6. >> syms x w; f=x^2*exp(-2*x)*sin(x+pi); F=laplace(f,x,w)
复制代码

8
Lisrelchen 发表于 2017-2-27 07:26:54
  1. Example 5.4 For the function f(t) given in Example 5.1, explore the relationship between
  2. L[d5f(t)/ dt5] and s5L[f(t)].
  3. Solution To solve the problem, the fifth-order derivative to the given function f(t) can be
  4. obtained by function diff(). Then, the Laplace transform can be obtained
  5. >> syms t s; f=t^2*exp(-2*t)*sin(t+pi); % declare variable and function
  6. F=simplify(laplace(diff(f,t,5))) % evaluate Laplace transform
复制代码

9
Lisrelchen 发表于 2017-2-27 07:35:55
  1. Example 5.7 Please solve the inverse Laplace transform problem numerically to the
  2. function given in Example 5.3.
  3. Solution It can be seen from the earlier example that, although the analytical solution does
  4. not exist, a high-precision numerical solution can be found with Symbolic Math Toolbox. For
  5. the same function, the variable x can be substituted by s and can be converted to a string
  6. with char() function. Numerical inverse Laplace transform can be obtained. Compared with
  7. exact method, the maximum relative error is 0.005826%.
  8. >> syms x t; % declare symbolic variables and the function
  9. G=(-17*x^5-7*x^4+2*x^3+x^2-x+1)...
  10. /(x^6+11*x^5+48*x^4+106*x^3+125*x^2+75*x+17);
  11. f=ilaplace(G,x,t); fun=char(subs(G,x,’s’)); % convert to string of s
  12. [t1,y1]=INVLAP(fun,0.01,5,100); tic, y0=subs(f,t,t1); toc
  13. y0=double(y0); err=norm((y1-y0)./y0) % evaluate the error
复制代码

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-27 15:03