请选择 进入手机版 | 继续访问电脑版
楼主: oliyiyi
1501 4

Intro to Text Analysis with R [推广有奖]

版主

泰斗

1%

还不是VIP/贵宾

-

TA的文库  其他...

计量文库

威望
7
论坛币
272079 个
通用积分
31647.9208
学术水平
1454 点
热心指数
1573 点
信用等级
1364 点
经验
384109 点
帖子
9636
精华
66
在线时间
5502 小时
注册时间
2007-5-21
最后登录
2024-8-27

初级学术勋章 初级热心勋章 初级信用勋章 中级信用勋章 中级学术勋章 中级热心勋章 高级热心勋章 高级学术勋章 高级信用勋章 特级热心勋章 特级学术勋章 特级信用勋章

oliyiyi 发表于 2016-1-23 19:56:49 |显示全部楼层 |坛友微信交流群

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

One of the most powerful aspects of using R is that you can download free packages for so many tools and types of analysis.  Text analysis is still somewhat in its infancy, but is very promising.  It is estimated that as much as 80% of the world’s data is unstructured, while most types of analysis only work with structured data.  In this paper, we will explore the potential of R packages to analyze unstructured text.

R provides two packages for working with unstructured text – TM and Sentiment.  TM can be installed in the usual way.  Unfortunately, Sentiment has been archived in 2012, and is therefore more difficult to install.  However, it can still be installed using the following method, according to Frank Wang (Wang).

install.packages("devtools")require(devtools)install_url("http://cran.r-project.org/src/contrib/Archive/sentiment/sentiment_0.1.tar.gz")install_url("http://cran.r-project.org/src/contrib/Archive/sentiment/sentiment_0.2.tar.gz")

The remaining required packaged can be installed as follows.

install.packages("plyr")install.packages("ggplot2")install.packages("wordcloud")install.packages("RColorBrewer")install.packages("tm")install.packages("SnowballC")

Once initially installed, each can be loaded later as library(name).

The next step is to load the data.  I chose to download comments from a newspaper vent line (Charleston Gazette-Mail ).  This data was saved to a text file and loaded and processed as follows.

###Get the datadata <- readLines("./Data/Comments/vent.txt")df <- data.frame(data)textdata <- df[df$data, ]textdata = gsub("[[:punct:]]", "", textdata)

Next, we remove nonessential characters such as punctuation, numbers, web addresses, etc from the text, before we begin processing the actual words themselves.  The code that follows was partially adapted from Gaston Sanchez in his work with sentiment analysis of Twitter data (Sanchez).

textdata = gsub("[[:punct:]]", "", textdata)textdata = gsub("[[:digit:]]", "", textdata)textdata = gsub("http\\w+", "", textdata)textdata = gsub("[ \t]{2,}", "", textdata)textdata = gsub("^\\s+|\\s+$", "", textdata)try.error = function(x){  y = NA  try_error = tryCatch(tolower(x), error=function(e) e)  if (!inherits(try_error, "error"))    y = tolower(x)  return(y)}textdata = sapply(textdata, try.error)textdata = textdata[!is.na(textdata)]names(textdata) = NULL

Next, we perform the sentiment analysis, classifying comments using a Bayesian analysis.  A polarity of positive, negative, or neutral is determined.  Finally, the comment, emotion, and polarity are combined in a single dataframe.

class_emo = classify_emotion(textdata, algorithm="bayes", prior=1.0)emotion = class_emo[,7]emotion[is.na(emotion)] = "unknown"class_pol = classify_polarity(textdata, algorithm="bayes")polarity = class_pol[,4]
sent_df = data.frame(text=textdata, emotion=emotion,                     polarity=polarity, stringsAsFactors=FALSE)sent_df = within(sent_df,                 emotion <- factor(emotion, levels=names(sort(table(emotion), decreasing=TRUE))))

Now that we have processed the comments, we can graph the emotions and polarities.

ggplot(sent_df, aes(x=emotion)) +geom_bar(aes(y=..count.., fill=emotion)) +scale_fill_brewer(palette="Dark2") +labs(x="emotion categories", y="")ggplot(sent_df, aes(x=polarity)) +  geom_bar(aes(y=..count.., fill=polarity)) +  scale_fill_brewer(palette="RdGy") +  labs(x="polarity categories", y="")
[color=rgb(255, 255, 255) !important]


We now prepare the data for creating a word cloud.  This includes removing common English stop words.

emos = levels(factor(sent_df$emotion))nemo = length(emos)emo.docs = rep("", nemo)for (i in 1:nemo){  tmp = textdata[emotion == emos]  emo.docs = paste(tmp, collapse=" ")}emo.docs = removeWords(emo.docs, stopwords("english"))corpus = Corpus(VectorSource(emo.docs))tdm = TermDocumentMatrix(corpus)tdm = as.matrix(tdm)colnames(tdm) = emoscomparison.cloud(tdm, colors = brewer.pal(nemo, "Dark2"),                 scale = c(3,.5), random.order = FALSE,                 title.size = 1.5)
[color=rgb(255, 255, 255) !important]


What do we gain from this analysis beside an attractive word cloud?  We can analyze the word cloud itself.  The Sentiment package has identified the most frequently occurring, important words, and their likely association with emotions.  For instance, ‘guns’ was associated with anger, while ‘hillary’ was associated with fear.  ‘pet’ was associate with sadness, and ‘aep’ was associated with surprise.  With very little work, we have automatically extracted the important topics from the unstructured text.

More importantly, we also have a table of the comments themselves with the emotions and polarity attached.  If we desire, we can sort them by emotion or polarity and continue our analysis.  If this had been corporate satisfaction data, for example, we may want to dig deeper into angry comments and joyous comments for different reasons.  We may use this as a tool to intelligently select comments for Quality Assurance analysis rather than blind random selection.  Text and Sentiment Analysis may be in its infancy, but it is can also be the beginning for further analysis.


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Analysis Analysi alysis Analys intro structured potential download provides explore

已有 1 人评分经验 学术水平 热心指数 收起 理由
Nicolle + 100 + 1 + 1 精彩帖子

总评分: 经验 + 100  学术水平 + 1  热心指数 + 1   查看全部评分

本帖被以下文库推荐

缺少币币的网友请访问有奖回帖集合
https://bbs.pinggu.org/thread-3990750-1-1.html
hjtoh 发表于 2016-1-23 20:07:02 来自手机 |显示全部楼层 |坛友微信交流群
oliyiyi 发表于 2016-1-23 19:56
One of the most powerful aspects of using R is that you can download free packages for so many tools ...
掌握一门语言很有必要
已有 1 人评分经验 热心指数 收起 理由
Nicolle + 20 + 1 精彩帖子

总评分: 经验 + 20  热心指数 + 1   查看全部评分

使用道具

seahhj 发表于 2016-1-24 00:12:00 |显示全部楼层 |坛友微信交流群
good material, thanks for sharing

使用道具

Nicolle 学生认证  发表于 2016-1-24 01:47:21 |显示全部楼层 |坛友微信交流群
提示: 作者被禁止或删除 内容自动屏蔽

使用道具

好书,谢谢分享。。。。。

使用道具

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-9-14 11:37