here is my two cents,
1. (M_n) is Uniforme Integrable, so there exist a random variable M such that E(M|F_n)=M_n, especially E(M)=E(M|F_0)=E(M_0)=0.
2. We have T = lim(T^n) a.s so we have
M_T = lim (M_T^n) a.s. .
3.On {T<+infty}, lim (M_T^n) = M_T a.s. ,
and E(|M_T^n|) < infty beacause (M_n) is U.I.,
So lim (M_T^n) = M_T in L1 by dominated convergence.
We got E(M_T |T<+infty)=E[lim(M_T^n)|T<+infty] = lim E[(M_T^n)|T<+infty] =E(M_0) = 0.
4. On {T=+infty}, M_T^n=M_n a.s. and lim (M_n) = M in L1. since (M_n) is U.I.
We also have E(M_T |T=+infty)=E[lim(M_n)|T=infty]=E[M|T=infty]=E(M_0) = 0.
5. Finally, E(M_T) = P(T=+infty)E(M_T |T=+infty)+P(T<+infty)E(M_T |T<+infty) = E(M_0) = 0.
这里面主要的intutition有两歌。
第一是:
UI的鞅M 在 L1 里面是闭的,也就是说,
E(lim M_n) =E(M) = E(M_0), 这样在 {T=+infty} 我们就直接有 E(M_T |T=+infty)=E[lim(M_n)|T=infty]=E[M|T=infty]=E(M_0) = 0.
第二是:
UI的鞅M, M_T是可积的,
因为E(M_T) = Sum{P(T=n)E(M_n)) <Sum{P(T=n))E(M)。
由于这两点,我们可以用 dominated cv 把 as 收敛 转化为 L1 收敛, 也就是期望相等。
不知道我说得清楚不清楚,其实你只要记住结论:
1。 如果停时T是有限的,那么 M_T 是鞅。
2。 如果M_n 是一致可积的,那么对于任何停时T, M_T 是鞅。
[此贴子已经被作者于2009-3-18 6:45:06编辑过]