楼主: zhuzhu83
2966 5

[下载] Introduction to Nonparametric Estimation [推广有奖]

  • 1关注
  • 2粉丝

已卖:3087份资源

硕士生

32%

还不是VIP/贵宾

-

威望
0
论坛币
10217 个
通用积分
30.3567
学术水平
-3 点
热心指数
2 点
信用等级
2 点
经验
895 点
帖子
42
精华
0
在线时间
174 小时
注册时间
2006-4-30
最后登录
2024-11-19

楼主
zhuzhu83 发表于 2009-4-16 08:50:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

Introduction to Nonparametric Estimation
Series: Springer Series in Statistics
Authors:Tsybakov, Alexandre B.

About this book
Concise and self-contained treatment of the theory Thorough analysis of optimality and adaptivity issues Detailed account on minimax lower bounds
Methods of nonparametric estimation are located at the core of modern statistical science. The aim of this book is to give a short but mathematically self-contained introduction to the theory of nonparametric estimation. The emphasis is on the construction of optimal estimators; therefore the concepts of minimax optimality and adaptivity, as well as the oracle approach, occupy the central place in the book.

This is a concise text developed from lecture notes and ready to be used for a course on the graduate level. The main idea is to introduce the fundamental concepts of the theory while maintaining the exposition suitable for a first approach in the field. Therefore, the results are not always given in the most general form but rather under assumptions that lead to shorter or more elegant proofs.

The book has three chapters. Chapter 1 presents basic nonparametric regression and density estimators and analyzes their properties. Chapter 2 is devoted to a detailed treatment of minimax lower bounds. Chapter 3 develops more advanced topics: Pinsker's theorem, oracle inequalities, Stein shrinkage, and sharp minimax adaptivity.


Contents

1 Nonparametric estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Examples of nonparametric models and problems . . . . . . . . . . . . 1
1.2 Kernel density estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Mean squared error of kernel estimators . . . . . . . . . . . . . . 4
1.2.2 Construction of a kernel of order  . . . . . . . . . . . . . . . . . . . 10
1.2.3 Integrated squared risk of kernel estimators . . . . . . . . . . . 12
1.2.4 Lack of asymptotic optimality for fixed density . . . . . . . . 16
1.3 Fourier analysis of kernel density estimators . . . . . . . . . . . . . . . . 19
1.4 Unbiased risk estimation. Cross-validation density estimators . 27
1.5 Nonparametric regression. The Nadaraya–Watson estimator . . . 31
1.6 Local polynomial estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.6.1 Pointwise and integrated risk of local polynomial estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.6.2 Convergence in the sup-norm . . . . . . . . . . . . . . . . . . . . . . . 42
1.7 Projection estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.7.1 Sobolev classes and ellipsoids . . . . . . . . . . . . . . . . . . . . . . . 49
1.7.2 Integrated squared risk of projection estimators . . . . . . . 51
1.7.3 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.8 Oracles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.9 Unbiased risk estimation for regression . . . . . . . . . . . . . . . . . . . . . 61
1.10 Three Gaussian models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.11 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2 Lower bounds on the minimax risk . . . . . . . . . . . . . . . . . . . . . . . . 77
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.2 A general reduction scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.3 Lower bounds based on two hypotheses . . . . . . . . . . . . . . . . . . . . 81
2.4 Distances between probability measures . . . . . . . . . . . . . . . . . . . . 83
2.4.1 Inequalities for distances . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.4.2 Bounds based on distances . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.5 Lower bounds on the risk of regression estimators at a point . . 91
2.6 Lower bounds based on many hypotheses . . . . . . . . . . . . . . . . . . . 95
2.6.1 Lower bounds in L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.6.2 Lower bounds in the sup-norm . . . . . . . . . . . . . . . . . . . . . . 108
2.7 Other tools for minimax lower bounds. . . . . . . . . . . . . . . . . . . . . . 110
2.7.1 Fano’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.7.2 Assouad’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.7.3 The van Trees inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
2.7.4 The method of two fuzzy hypotheses . . . . . . . . . . . . . . . . . 125
2.7.5 Lower bounds for estimators of a quadratic functional . . 128
2.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
2.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3 Asymptotic efficiency and adaptation . . . . . . . . . . . . . . . . . . . . . . 137
3.1 Pinsker’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.2 Linear minimax lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.3 Proof of Pinsker’s theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.3.1 Upper bound on the risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.3.2 Lower bound on the minimax risk . . . . . . . . . . . . . . . . . . . 147
3.4 Stein’s phenomenon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.4.1 Stein’s shrinkage and the James–Stein estimator . . . . . . . 157
3.4.2 Other shrinkage estimators . . . . . . . . . . . . . . . . . . . . . . . . . 162
3.4.3 Superefficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
3.5 Unbiased estimation of the risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
3.6 Oracle inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.7 Minimax adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
3.8 Inadmissibility of the Pinsker estimator . . . . . . . . . . . . . . . . . . . . 180
3.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
3.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Index . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 

 

315805.pdf (1.59 MB, 需要: 10 个论坛币)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:introduction Estimation Parametric troduction nonpara 下载 introduction Estimation

沙发
jcx350(真实交易用户) 发表于 2009-4-16 09:13:00
好书

藤椅
luckly(真实交易用户) 发表于 2009-4-23 10:21:00
学习中,谢谢

板凳
毓闻(真实交易用户) 学生认证  发表于 2010-11-26 20:59:36
感谢楼主~~~~

报纸
pkuso(未真实交易用户) 发表于 2011-4-5 21:27:51
感谢LZ......

地板
m8843620(未真实交易用户) 发表于 2011-5-25 13:32:12
謝謝樓主的分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-25 02:57