17048 121

[基础理论] 数据分析师点拨:互联网金融风险控制的大数据来源   [推广有奖]

企业贵宾

已卖:160份资源

巨擘

0%

还不是VIP/贵宾

-

威望
4
论坛币
624047 个
通用积分
180.4857
学术水平
918 点
热心指数
987 点
信用等级
841 点
经验
399143 点
帖子
9786
精华
48
在线时间
17322 小时
注册时间
2014-8-19
最后登录
2022-11-2

楼主
widen我的世界 学生认证  发表于 2016-5-30 15:11:36 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

    数据分析师点拨:互联网金融风险控制的大数据来源


近年来,以第三方支付、P2P平台、众筹为代表的互联网金融模式引起了人们的广泛关注,该模式大量运用了搜索引擎、大数据、社交网络和云计算等技术,有效降低了市场信息不对称程度,大幅节省了信息处理的成本,让支付结算变得更便捷,达到了同资本市场直接融资、银行间接融资一样高的资源配置效率。但由于我国互联网金融出现的时间短,发展快,目前还没有形成完善的监控机制和信用体系,一旦现有互联网金融体系失控,将存在着巨大的风险。


(142).jpg


首先是信用风险大。目前我国信用体系尚不完善,互联网金融的相关法律还有待配套,互联网金融违约成本较低,容易诱发恶意骗贷、卷款跑路等风险问题。特别是P2P网贷平台由于准入门槛低和缺乏监管,成为不法分子从事非法集资和诈骗等犯罪活动的温床。


其次是网络安全风险大。我国互联网安全问题突出,网络金融犯罪问题不容忽视。一旦遭遇黑客攻击,互联网金融的正常运作会受到影响。


(136).jpg


互联网金融企业通过获得多渠道的大数据原料,利用数学运算和统计学的模型进行分析,从而评估出借款者的信用风险,典型的企业是美国的Zest Finance。其通过分析模型对每位信贷申请人的上万条原始信息数据进行分析,并得出超过数万个可对其行为做出测量的指标,而这一过程在5秒钟内就能全部完成。在进行数据处理之前,对业务的理解、对数据的理解非常重要,这决定了要选取哪些数据原料进行数据挖掘,在进入“数据工厂”之前的工作量通常要占到整个过程的60%以上。


目前,可被用于助力互联网金融风险控制的数据存在多个来源。


(130).jpg


一是电商大数据,以阿里巴巴为例,它已利用电商大数据建立了相对完善的风控数据挖掘系统,并通过旗下阿里巴巴、淘宝、天猫、支付宝等积累的大量交易数据作为基本原料,将数值输入网络行为评分模型,进行信用评级。


二是信用卡类大数据,此类大数据以信用卡申请年份、通过与否、授信额度、卡片种类、还款金额等都作为信用评级的参考数据。国内典型企业是成立于2005年的“我爱卡”,它利用自身积累的数据和流量优势,结合国外引入的FICO(费埃哲)风控模型,从事互联网金融小额信贷业务。


(123).jpg


三是社交网站大数据,典型企业为美国的Lending Club,它基于社交平台上的应用搭建借贷双方平台,并利用社交网络关系数据和朋友之间的相互信任聚合人气,平台上的借款人被分为若干信用等级,但是却不必公布自己的信用历史。


四是小额贷款类大数据,目前可以充分利用的小贷风控数据包括信贷额度、违约记录等。由于单一企业信贷数据的数量级较低、地域性较强,业内共享数据的模式已正逐步被认可。


(122).jpg


五是第三方支付大数据,支付是互联网金融行业的资金入口和结算通道,此类平台可基于用户消费数据做信用分析,支付方向、月支付额度、消费品牌都可以作为信用评级数据。


六是生活服务类网站大数据,包括水、电、煤气、物业费交纳等,此类数据客观真实地反映了个人基本信息,是信用评级中一种重要的数据类型。


(111).jpg


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:数据分析师 互联网金融 数据来源 数据分析 金融风险 数据分析师点拨 互联网金融风险控制的大数据来源 大数据 互联网金融 数据分析师


https://www.cda.cn/?seo-luntan
高薪就业·数据科学人才·16年教育品牌

沙发
一直在北方 在职认证  发表于 2016-5-30 15:13:02
互联网金融企业通过获得多渠道的大数据原料,利用数学运算和统计学的模型进行分析,从而评估出借款者的信用风险,典型的企业是美国的Zest Finance。其通过分析模型对每位信贷申请人的上万条原始信息数据进行分析,并得出超过数万个可对其行为做出测量的指标,而这一过程在5秒钟内就能全部完成。

藤椅
心从未停止呼吸 在职认证  发表于 2016-5-30 15:19:26
在进行数据处理之前,对业务的理解、对数据的理解非常重要,这决定了要选取哪些数据原料进行数据挖掘,在进入“数据工厂”之前的工作量通常要占到整个过程的60%以上。

板凳
保罗沃克 在职认证  发表于 2016-5-30 15:21:08
电商大数据,以阿里巴巴为例,它已利用电商大数据建立了相对完善的风控数据挖掘系统,并通过旗下阿里巴巴、淘宝、天猫、支付宝等积累的大量交易数据作为基本原料,将数值输入网络行为评分模型,进行信用评级。

报纸
保罗沃克 在职认证  发表于 2016-5-30 15:21:27
信用卡类大数据,此类大数据以信用卡申请年份、通过与否、授信额度、卡片种类、还款金额等都作为信用评级的参考数据。

地板
保罗沃克 在职认证  发表于 2016-5-30 15:21:41
随着企业对数据价值的认识越来越高,数据分析类项目也随之增加,尤其是近一段时间大数据时代的到来,数据分析已经是必不可少的内容。其中数据分析结果以报表形式呈现给用户,是各项目的重要组成部分。

7
good1234 学生认证  发表于 2016-5-30 15:22:33
大数据营销是基于多平台的大量数据,依托大数据技术的基础上,应用于互联网广告行业的营销方式。大数据营销衍生于互联网行业,又作用于互联网行业。依托多平台的大数据采集,以及大数据技术的分析与预测能力,能够使广告更加精准有效,给品牌企业带来更高的投资回报率。

8
热爱你的热爱 在职认证  发表于 2016-5-30 15:22:58
数据科学家应该不仅仅让数据说话,而且善于运用自身的智慧。数据应该是影响决策的因素而不是数据科学项目决策制定的最终声音。企业雇佣的数据科学家应该是可以将领域知识和技术特长结合起来的,这是避免错误的理想情况。

9
cglee 发表于 2016-9-6 09:45:20

回帖奖励 +5

支持一下了

10
cglee 发表于 2016-9-6 09:45:55

回帖奖励 +5

支持一下了

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-25 15:51