楼主: oliyiyi
2022 4

【Top 论坛】Regularization in Logistic Regression [推广有奖]

版主

已卖:2993份资源

泰斗

1%

还不是VIP/贵宾

-

TA的文库  其他...

计量文库

威望
7
论坛币
117070 个
通用积分
31670.9540
学术水平
1454 点
热心指数
1573 点
信用等级
1364 点
经验
384134 点
帖子
9629
精华
66
在线时间
5508 小时
注册时间
2007-5-21
最后登录
2025-7-8

初级学术勋章 初级热心勋章 初级信用勋章 中级信用勋章 中级学术勋章 中级热心勋章 高级热心勋章 高级学术勋章 高级信用勋章 特级热心勋章 特级学术勋章 特级信用勋章

楼主
oliyiyi 发表于 2016-6-26 15:15:55 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

A discussion on regularization in logistic regression, and how its usage plays into better model fit and generalization.

By Sebastian Raschka, Michigan State University.

Regularization does NOT improve the performance on the data set that the algorithm used to learn the model parameters (feature weights). However, it can improve the generalization performance, i.e., the performance on new, unseen data, which is exactly what we want.

In intuitive terms, we can think of regularization as a penalty against complexity. Increasing the regularization strength penalizes "large" weight coefficients -- our goal is to prevent that our model picks up "peculiarities," "noise," or "imagines a pattern where there is none."

Again, we don't want the model to memorize the training dataset, we want a model that generalizes well to new, unseen data.

In more specific terms, we can think of regularization as adding (or increasing the) bias if our model suffers from (high) variance (i.e., it overfits the training data). On the other hand, too much bias will result in underfitting (a characteristic indicator of high bias is that the model shows a "bad" performance for both the training and test dataset). We know that our goal in an unregularized model is to minimize the cost function, i.e., we want to find the feature weights that correspond to the global cost minimum (remember that the logistic cost function is convex).

Now, if we regularize the cost function (e.g., via L2 regularization), we add an additional to our cost function (J) that increases as the value of your parameter weights (w) increase; keep in mind that the regularization we add a new hyperparameter, lambda, to control the regularization strength.

Therefore, our new problem is to minimize the cost function given this added constraint.

Intuitively, we can think of the "sphere" at the coordinate center in the figure above as our "budget." Now, our objective is still the same: we want to minimize the cost function. However, we are now constraint by the regularization term; we want to get as close as possible to the global minimum while staying within our "budget" (i.e., the sphere).

Bio: Sebastian Raschka is a 'Data Scientist' and Machine Learning enthusiast with a big passion for Python & open source. Author of 'Python Machine Learning'. Michigan State University.

Original. Reposted with permission.

Related:



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:regression regressio logistic ogistic logisti exactly better terms learn

已有 1 人评分学术水平 热心指数 信用等级 收起 理由
janyiyi + 3 + 3 + 3 精彩帖子

总评分: 学术水平 + 3  热心指数 + 3  信用等级 + 3   查看全部评分

缺少币币的网友请访问有奖回帖集合
https://bbs.pinggu.org/thread-3990750-1-1.html

沙发
20115326 学生认证  发表于 2016-11-13 09:20:36
正则化啊,不错

藤椅
janyiyi 发表于 2016-12-5 21:09:16
谢谢分享

板凳
花茶物语 发表于 2017-1-5 15:35:03
thanks for sharing

报纸
tianwk 发表于 2020-3-8 14:50:21
thanks for sharing

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-5 17:57