楼主: igs816
2715 23

[其他] Empirical Modeling and Data Analysis for Engineers and Applied Scientists [推广有奖]

已卖:261310份资源
好评率:99%
商家信誉:极好

泰斗

6%

还不是VIP/贵宾

-

威望
9
论坛币
1763323 个
通用积分
20525.1378
学术水平
2754 点
热心指数
3477 点
信用等级
2565 点
经验
485158 点
帖子
5460
精华
52
在线时间
3920 小时
注册时间
2007-8-6
最后登录
2026-1-22

高级学术勋章 特级学术勋章 高级信用勋章 特级信用勋章 高级热心勋章 特级热心勋章

楼主
igs816 在职认证  发表于 2016-7-23 12:02:42 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
xDX5LJByUdvn3Q8ZxlzWf8Dn9rRe9IYG.jpg

Empirical Modeling and Data Analysis for Engineers and Applied Scientists by Scott Pardo
English | 25 July 2016 | ISBN: 3319327674 | 264 Pages | PDF (True) | 11.79 MB

This textbook teaches advanced undergraduate and first-year graduate students in Engineering and Applied Sciences to gather and analyze empirical observations (data) in order to aid in making design decisions.
                                                                 

While science is about discovery, the primary paradigm of engineering and "applied science" is design. Scientists are in the discovery business and want, in general, to understand the natural world rather than to alter it.  In contrast, engineers and applied scientists design products, processes, and solutions to problems.  

That said, statistics, as a discipline, is mostly oriented toward the discovery paradigm.  Young engineers come out of their degree programs having taken courses such as "Statistics for Engineers and Scientists" without any clear idea as to how they can use statistical methods to help them design products or processes.  Many seem to think that statistics is only useful for demonstrating that a device or process actually does what it was designed to do.  Statistics courses emphasize creating predictive or classification models - predicting nature or classifying individuals, and statistics is often used to prove or disprove phenomena as opposed to aiding in the design of a product or process. In industry however, Chemical Engineers use designed experiments to optimize petroleum extraction; Manufacturing Engineers use experimental data to optimize machine operation; Industrial Engineers might use data to determine the optimal number of operators required in a manual assembly process.  This text teaches engineering and applied science students to incorporate empirical investigation into such design processes.
Much of the discussion in this book is about models, not whether the models truly represent reality but whether they adequately represent reality with respect to the problems at hand; many ideas focus on how to gather data in the most efficient way possible to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  construct adequate models.
Includes chapters on subjects not often seen together in a single text (e.g., measurement systems, mixture experiments, logistic regression, Taguchi methods, simulation)
Techniques and concepts introduced present a wide variety of design situations familiar to engineers and applied scientists and inspire incorporation of experimentation and empirical investigation into the design process.
Software is integrally linked to statistical analyses with fully worked examples in each chapter; fully worked using several packages:  SAS, R, JMP, Minitab, and MS Excel - also including discussion questions at the end of each chapter.
The fundamental learning objective of this textbook is for the reader to understand how experimental data can be used to make design decisions and to be familiar with the most common types of experimental designs and analysis methods.

本帖隐藏的内容

Empirical Modeling and Data Analysis for Engineers and Applied Scientists.pdf (11.79 MB, 需要: 5 个论坛币)



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Scientists Empirical Scientist Engineers Modeling discovery primary science design making

已有 1 人评分经验 论坛币 学术水平 热心指数 信用等级 收起 理由
一缕阳光等你 + 100 + 20 + 1 + 1 + 1 奖励积极上传好的资料

总评分: 经验 + 100  论坛币 + 20  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

本帖被以下文库推荐

沙发
hyq2003(未真实交易用户) 发表于 2016-7-23 12:09:31
thanks

藤椅
smartlife(未真实交易用户) 在职认证  发表于 2016-7-23 12:17:14
The fundamental learning objective of this textbook is for the reader to understand how experimental data can be used to make design decisions and to be familiar with the most common types of experimental designs and analysis methods.

板凳
mengyong(未真实交易用户) 发表于 2016-7-23 12:19:21
l Modeling and Data Analysis for Engineers an

报纸
ekscheng(未真实交易用户) 发表于 2016-7-23 15:14:19

地板
lionli(真实交易用户) 发表于 2016-7-23 16:56:34
thanks  for sharing

7
wlou64(真实交易用户) 发表于 2016-7-23 17:04:43
O(∩_∩)O谢谢大侠分享

8
fengyg(真实交易用户) 企业认证  发表于 2016-7-23 17:11:54
kankan

9
nickyxfgsm(真实交易用户) 发表于 2016-7-23 18:43:02
thanks for sharing

10
rmatrix(未真实交易用户) 发表于 2016-7-23 19:21:35
Empirical Modeling and Data Analysis for Engineers and Applied Scientists

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2026-1-28 11:32