447 0

[英文文献] Indirect inference with time series observed with error-用误差观察时间序列的间接推理 [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

学前班

0%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
10 点
帖子
0
精华
0
在线时间
0 小时
注册时间
2020-9-19
最后登录
2020-9-19

楼主
颠覆性创新114 发表于 2004-11-27 10:08:55 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文文献:Indirect inference with time series observed with error-用误差观察时间序列的间接推理
英文文献作者:Eduardo Rossi,Paolo Santucci de Magistris
英文文献摘要:
We analyze the properties of the indirect inference estimator when the observed series are contaminated by measurement error. We show that the indirect inference estimates are asymptotically biased when the nuisance parameters of the measurement error distribution are neglected in the indirect estimation. We propose to solve this inconsistency by jointly estimating the nuisance and the structural parameters. Under standard assumptions, this estimator is consistent and asymptotically normal. A condition for the identification of ARMA plus noise is obtained. The proposed methodology is used to estimate the parameters of continuous-time stochastic volatility models with auxiliary specifications based on realized volatility measures. Monte Carlo simulations shows the bias reduction of the indirect estimates obtained when the microstructure noise is explicitly modeled. Finally, an empirical application illustrates the relevance of a realistic specification of the microstructure noise distribution to match the features of the observed log-returns at high frequencies.

分析了观测序列受测量误差污染时间接推理估计器的性质。当间接估计中忽略测量误差分布的有害参数时,间接推断估计是渐近有偏的。我们建议通过联合估计结构参数和妨害来解决这种不一致性。在标准假设下,该估计量是一致的,渐近正态的。得到了ARMA加噪声识别的条件。该方法用于基于已实现波动测度的带辅助规范的连续时间随机波动模型的参数估计。蒙特卡洛模拟表明,当微观结构噪声明确建模时,间接估计得到的偏差减少。最后,一个经验的应用说明了一个切合实际的微观结构噪声分布规范,以匹配在高频率的观测对数回报的特征。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-29 02:35