楼主: 数学考研268
371 0

[英文文献] Supervision in Factor Models Using a Large Number of Predictors [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

学前班

0%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
10 点
帖子
0
精华
0
在线时间
0 小时
注册时间
2020-9-19
最后登录
2020-9-19

楼主
数学考研268 发表于 2004-12-1 22:11:40 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文文献:Supervision in Factor Models Using a Large Number of Predictors
英文文献作者:Lorenzo Boldrini,Eric Hillebrand
英文文献摘要:
In this paper we investigate the forecasting performance of a particular factor model (FM) in which the factors are extracted from a large number of predictors. We use a semi-parametric state-space representation of the FM in which the forecast objective, as well as the factors, is included in the state vector. The factors are informed of the forecast target (supervised) through the state equation dynamics. We propose a way to assess the contribution of the forecast objective on the extracted factors that exploits the Kalman filter recursions. We forecast one target at a time based on the filtered states and estimated parameters of the state-space system. We assess the out-of-sample forecast performance of the proposed method in a simulation study and in an empirical application, comparing its forecasts to the ones delivered by other popular multivariate and univariate approaches, e.g. a standard dynamic factor model with separate forecast and state equations.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-29 02:35