楼主: danielmira
4642 9

机器学习笔记(基于我期末复习的cheat sheet) [推广有奖]

  • 0关注
  • 20粉丝

已卖:4338份资源

讲师

9%

还不是VIP/贵宾

-

威望
0
论坛币
9166 个
通用积分
8.3603
学术水平
28 点
热心指数
33 点
信用等级
18 点
经验
9452 点
帖子
218
精华
0
在线时间
434 小时
注册时间
2004-12-25
最后登录
2026-1-1

楼主
danielmira 发表于 2016-12-19 06:01:09 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

机器学习期末总结见附件 Machine_Learning_Summary.pdf (747.81 KB)

我在回复(“报纸”)中,给出了若干有用的网址。可供选看。


机器学习期末体会

1.    Free and good textbooks:
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning. Vol. 6. New York: springer, 2013.
Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. "The elements of statistical learning. 2001." NY Springer (2001).
We mainly use the first intro book. I rely on the second book for support vector machine part.
2.    Suggestions about what to do
1.    Read the book.
2.    Watch the lecture videos (https://www.r-bloggers.com/in-de ... s-of-expert-videos/)
3.    Attend a class in person is way better than doing it online especially when the professor is actively doing research in this area. Our professor is very good at illustrating the intuition through graphs. I benefit a lot from his strong sense of geometry. Online courses are typically standardized without much interaction. By contrast, Q&A in a real classroom is key to a deep understanding.
4.    Do the lab work. Do not just read the lab. I enjoy using R markdown which is similar to Python notebook. I copy and paste the code from the book and then play with it a bit, and write down comments. This kind of active reading is much more productive than just reading the book.
5.    Do the homework. The solutions are available online, but always try to do it by yourself first. All the theoretical questions can be solved using basic probability and calculus, no measure theory necessary. All computer questions can be solved using the techniques covered in the lab. They basically change the setup a little and encourage you to go back to the lab examples so that you reinforce what you learned in the lab.
6.    Take quizzes and exams. Studying for exams and quizzes is a good way to force yourself to understand the basics. A Stanford professor seems to offer a free class through coursera. He also seems to give quizzes and exams which are helpful.
7.    Do a project using real data. I like our data science professor’s rule: you have to use nontraditional data such as textual data. Doing a project basically allows you to apply the knowledge in the context of your discipline. Studying variance-bias trade-off one hundred times may not be as effective as seeing it once in your real application. For example, I get to see how poor the performance of SVM radial basis was when gamma=100 (selected by some criteria) in a real example.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:sheet 学习笔记 期末复习 Heat 机器学习 learning elements machine support Robert

已有 1 人评分经验 论坛币 热心指数 收起 理由
happy_287422301 + 100 + 100 + 2 对论坛有贡献

总评分: 经验 + 100  论坛币 + 100  热心指数 + 2   查看全部评分

博客:http://danielyoung.blog.sohu.com/

沙发
universecn 发表于 2016-12-19 06:15:46
thanks for sharing!!

藤椅
danielmira 发表于 2016-12-19 06:22:28
universecn 发表于 2016-12-19 06:15
thanks for sharing!!
谢谢回帖

板凳
JCDD5 发表于 2016-12-19 07:36:04
thx for sharing ~

报纸
danielmira 发表于 2016-12-19 09:08:56
顺便说下。
习题答案地址:
http://blog.princehonest.com/stat-learning/
http://waxworksmath.com/Authors/G_M/James/james.html
教材地址:
http://www-bcf.usc.edu/~gareth/ISL/
视频和讲义地址:
https://www.r-bloggers.com/in-depth-introduction-to-machine-learning-in-15-hours-of-expert-videos/
斯坦福大学网络课堂免费课地址:
https://www.coursera.org/learn/machine-learning
相关课程Python code地址:
https://github.com/justmarkham/DAT5
https://github.com/sinanuozdemir/SF_DAT_15/tree/master/code
已有 1 人评分经验 论坛币 收起 理由
happy_287422301 + 100 + 100 补偿

总评分: 经验 + 100  论坛币 + 100   查看全部评分

地板
happy_287422301 在职认证  发表于 2016-12-19 14:36:33
danielmira 发表于 2016-12-19 09:08
顺便说下。
习题答案地址:
http://blog.princehonest.com/stat-learning/
欢迎你继续积极参与论坛活动!

7
danielmira 发表于 2016-12-19 19:21:07
happy_287422301 发表于 2016-12-19 14:36
欢迎你继续积极参与论坛活动!
谢谢版主
已有 1 人评分论坛币 收起 理由
happy_287422301 + 40 不客气,欢迎你继续积极参与论坛活动

总评分: 论坛币 + 40   查看全部评分

8
happy_287422301 在职认证  发表于 2016-12-20 21:07:08
danielmira 发表于 2016-12-19 19:21
谢谢版主

9
花茶物语 发表于 2017-1-4 10:29:16
thanks for sharing

10
xqjy66 发表于 2018-8-2 21:59:44
谢谢。。。。。。。

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-11 17:06