楼主: jingmouren
3457 1

[书籍介绍] Functional and Shape Data Analysis [推广有奖]

  • 5关注
  • 3粉丝

已卖:348份资源

讲师

54%

还不是VIP/贵宾

-

威望
0
论坛币
3662 个
通用积分
135.7518
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
192143 点
帖子
21
精华
0
在线时间
1065 小时
注册时间
2016-9-18
最后登录
2025-1-5

楼主
jingmouren 发表于 2016-12-26 10:44:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Springer Series in StatisticsFree Preview
[size=1.1]© 2016
Functional and Shape Data Analysis

Authors: Srivastava, Anuj, Klassen, Eric P



  • About this Textbook

This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling future scientific challenges.


Recently, a data-driven and application-oriented focus on shape analysis has been trending. This text offers a self-contained treatment of this new generation of methods in shape analysis of curves. Its main focus is shape analysis of functions and curves—in one, two, and higher dimensions—both closed and open. It develops elegant Riemannian frameworks that provide both quantification of shape differences and registration of curves at the same time. Additionally, these methods are used for statistically summarizing given curve data, performing dimension reduction, and modeling observed variability. It is recommended that the reader have a background in calculus, linear algebra, numerical analysis, and computation.



  • About the authors

Anuj Srivastava is a Professor in the Department of Statistics and a Distinguished Research Professor at Florida State University. His areas of interest include statistical analysis on nonlinear manifolds, statistical computer vision, functional data analysis, and statistical shape theory. He has been the associate editor for the Journal of Statistical Planning and Inference, and several IEEE journals. He is a fellow of the International Association of Pattern Recognition (IAPR) and a senior member of the Institute for Electrical and Electronic Engineers (IEEE).
Eric Klassen is a Professor in the Department of Mathematics at Florida State University. His mathematical interests include topology, geometry, and shape analysis. In his spare time, he enjoys playing the piano, riding his bike, and contra dancing.


ToC

1 Motivation for Function and Shape Analysis . . . . . . . . . . . . . . . . . . 1

2 Previous Techniques in Shape Analysis . . . . . . . . . . . . . . . . . . . . . . . 21

3 Background: Relevant Tools from Geometry . . . . . . . . . . . . . . . . . .39

4 Functional Data and Elastic Registration . . . . . . . . . . . . . . . . . . . . . 73

5 Shapes of Planar Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Shapes of Planar Closed Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7 Statistical Modeling on Nonlinear Manifolds . . . . . . . . . . . . . . . . . . 233

8 Statistical Modeling of Functional Data . . . . . . . . . . . . . . . . . . . . . . . 269

9 Statistical Modeling of Planar Shapes . . . . . . . . . . . . . . . . . . . . . . . . . 305

10 Shapes of Curves in Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . 349

11 Related Topics in Shape Analysis of Curves . . . . . . . . . . . . . . . . . . . 385

Background Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

A.1 Basic Differential Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

A.1.1 Tangent Spaces on a Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . 421

A.1.2 Submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

A.2 Basic Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

A.3 Basic Geometry of Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

A.3.1 Hilbert Manifolds and Submanifolds . . . . . . . . . . . . . . . . . . . . . 432

The Dynamic Programming Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

B.1 Theoretical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

B.2 Computer Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436






Functional and Shape Data Analysis.pdf.zip (18.49 MB, 需要: 10 个论坛币) 本附件包括:
  • (Springer Series in Statistics) Anuj Srivastava, Eric P. Klassen (auth.)-Functional and Shape Data Analysis-Springer-Verlag New York (2016).pdf
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Functional function Analysis Analysi Analys describes represent function biology compare

本帖被以下文库推荐

沙发
franky_sas(未真实交易用户) 发表于 2016-12-26 10:55:03
Thanks.

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-1-2 00:37