楼主: cmwei333
1620 9

[教材书籍] 【美国数学协会出版】 Quasipower Series and Quasianalytic Classes of Functions [推广有奖]

贵宾

已卖:205022份资源

泰斗

1%

还不是VIP/贵宾

-

TA的文库  其他...

【历史+心理学+社会自然科学】

【数学+统计+计算机编程】

【金融+经济+商学+国际政治】

威望
6
论坛币
3605315 个
通用积分
1119.1150
学术水平
4327 点
热心指数
4650 点
信用等级
3957 点
经验
363248 点
帖子
9795
精华
9
在线时间
2842 小时
注册时间
2015-2-9
最后登录
2017-1-29

初级热心勋章 中级热心勋章 高级热心勋章 初级信用勋章 中级信用勋章 初级学术勋章 特级热心勋章 中级学术勋章 高级信用勋章 高级学术勋章 特级学术勋章 特级信用勋章

楼主
cmwei333 发表于 2016-12-29 01:48:57 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Quasipower Series and Quasianalytic Classes of Functions

G. V. Badalyan

cover.jpg

In this book, G. V. Badalyan addresses the fundamental problems of the theory of infinitely-differentiable functions using the theory of functions of quasianalytic classes.

A certain class of functions CC on an interval is called quasianalytic if any function in CC is uniquely determined by the values of its derivatives at any point. The obvious question, then, is how to reconstruct such a function from the sequence of values of its derivatives at a certain point. In order to answer that question, Badalyan combines a study of expanding functions in generalized factorial series with a study of quasipower series.

The theory of quasipower series and its application to the reconstruction problem are explained in detail in this research monograph. Along the way other, related problems are solved, such as Borel's hypothesis that no quasianalytic function can have all positive derivatives at a point.

Originally published in Russian, this English translation contains additional material that treats the problems of classification of infinitely-differentiable functions, conditions for absolute convergence of quasipower series in terms of the functions that generate them, and the possibility of representing analytic functions by quasipower series in non-circular domains.

While the treatment is technical, the theory is developed chapter by chapter in detail, and the first chapter is of an introductory nature. The quasipower series technique explained here provides the means to extend the previously known results and elucidates their nature in the most relevant manner. This method also allows for thorough investigation of numerous problems of the theory of functions of quasianalytic classes by graduate students and research mathematicians.

目录截图:

pic.png

原版 PDF + DJVU (建议使用 WinDjView 来阅读文件):

本帖隐藏的内容

原版 PDF:
Quasipower Series and Quasianalytic Classes of Functions.pdf (10.03 MB, 需要: 10 个论坛币)

DJVU:
Quasipower Series and Quasianalytic Classes of Functions.zip (1.71 MB, 需要: 10 个论坛币) 本附件包括:
  • Quasipower Series and Quasianalytic Classes of Functions.djvu


PDF + DJVU 压缩包:
QSQCF.zip (11.64 MB, 需要: 20 个论坛币) 本附件包括:
  • Quasipower Series and Quasianalytic Classes of Functions.pdf
  • Quasipower Series and Quasianalytic Classes of Functions.djvu


  如果你喜欢我分享的书籍,请关注我:
https://bbs.pinggu.org/z_guanzhu.php?action=add&fuid=5975757

订阅我的文库:

【金融 + 经济 + 商学 + 国际政治】
https://bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3257

【数学 + 统计 + 计算机编程】
https://bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3258

【历史 + 心理学 + 社会自然科学】
https://bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3259



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Functions function Analytic classes Series function problems question sequence Series

已有 2 人评分经验 论坛币 学术水平 收起 理由
金哥123 + 80 + 12 + 1 精彩帖子
hylpy1 + 100 精彩帖子

总评分: 经验 + 180  论坛币 + 12  学术水平 + 1   查看全部评分

本帖被以下文库推荐

bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3257
bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3258
bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3259

沙发
caifacai(未真实交易用户) 发表于 2016-12-29 07:24:32
感谢分享好资源!

藤椅
franky_sas(未真实交易用户) 发表于 2016-12-29 09:12:14

板凳
crossbone254(真实交易用户) 发表于 2016-12-29 11:27:31
Quasipower Series and Quasianalytic Classes of Functions

报纸
hylpy1(未真实交易用户) 在职认证  发表于 2016-12-29 16:20:59
Quasipower Series and Quasianalytic Classes of Functions(G. V. Badalyan)

地板
金哥123(未真实交易用户) 学生认证  发表于 2016-12-29 23:18:51
感谢分享`

7
飞鸿惊鸿(真实交易用户) 发表于 2016-12-31 15:49:42
感谢分享

8
shicfirst(真实交易用户) 发表于 2017-1-18 08:47:47

9
wl5f(未真实交易用户) 在职认证  发表于 2017-1-18 11:54:35
感谢分享好书

10
aggiewe(未真实交易用户) 发表于 2017-1-21 16:10:20
see...............

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-9 14:12