楼主: igs816
2575 11

[其他] Building Recommendation Engines [推广有奖]

已卖:261241份资源

泰斗

6%

还不是VIP/贵宾

-

威望
9
论坛币
1762827 个
通用积分
20526.5413
学术水平
2754 点
热心指数
3477 点
信用等级
2565 点
经验
485149 点
帖子
5457
精华
52
在线时间
3909 小时
注册时间
2007-8-6
最后登录
2025-12-30

高级学术勋章 特级学术勋章 高级信用勋章 特级信用勋章 高级热心勋章 特级热心勋章

楼主
igs816 在职认证  发表于 2017-1-1 11:28:14 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
ids88GWQtZ0BVLFMI4U06ydeQWUnHzp0.jpg
Building Recommendation Engines by Sureshkumar Gorakala
English | 5 Jan. 2017 | ISBN: 1785884859 | 357 Pages | AZW3/MOBI/EPUB/PDF (conv) | 81.07 MB

                                                
Key Features

A step-by-step guide to building recommendation engines that are personalized, scalable, and real time
Get to grips with the best tool available on the market to create recommender systems
This hands-on guide shows you how to implement different tools for recommendation engines, and when to use which

Book Description

A recommendation engine (sometimes referred to as a recommender system) is a tool that lets algorithm developers predict what a user may or may not like among a list of given items. Recommender systems have become extremely common in recent years, and are applied in a variety of applications. The most popular ones are movies, music, news, books, research articles, search queries, social tags, and products in general.

The book starts with an introduction to recommendation systems and its applications. You will then start building recommendation engines straight away from the very basics. As you move along, you will learn to build recommender systems with popular frameworks such as R, Python, Spark, Neo4j, and Hadoop. You will get an insight into the pros and cons of each recommendation engine and when to use which recommendation to ensure each pick is the one that suits you the best.

During the course of the book, you will create simple recommendation engine, real-time recommendation engine, scalable recommendation engine, and more. You will familiarize yourselves with various techniques of recommender systems such as collaborative, content-based, and cross-recommendations before getting to know the best practices of building a recommender system towards the end of the book!

What you will learn

Build your first recommendation engine
Discover the tools needed to build recommendation engines
Dive into the various techniques of recommender systems such as collaborative, content-based, and cross-recommendations
Create efficient decision-making systems that will ease your work
Familiarize yourself with machine learning algorithms in different frameworks
Master different versions of recommendation engines from practical code examples
Explore various recommender systems and implement them in popular techniques with R, Python, Spark, and others

本帖隐藏的内容

Building Recommendation Engines.rar (69.68 MB, 需要: 10 个论坛币) 本附件包括:
  • Building Recommendation Engines.pdf
  • Building Recommendation Engines.azw3
  • Building Recommendation Engines.epub
  • Building Recommendation Engines.mobi




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Recommend Building commend Engines Engine different available building engines create

已有 1 人评分经验 论坛币 收起 理由
fantuanxiaot + 55 + 55 精彩帖子

总评分: 经验 + 55  论坛币 + 55   查看全部评分

本帖被以下文库推荐

沙发
ermutuxia(真实交易用户) 发表于 2017-1-1 12:35:31
Wonderful

藤椅
小陆家嘴(真实交易用户) 发表于 2017-1-1 15:16:19
       
【畅销书系列】The Bet: Paul Ehrlich, Julian Simon, and Our Gamble over Earth’s

板凳
rbmike(真实交易用户) 发表于 2017-1-1 16:31:17
看看,怎么样

报纸
Nicolle(真实交易用户) 学生认证  发表于 2017-1-2 11:16:45
提示: 作者被禁止或删除 内容自动屏蔽

地板
魔元(未真实交易用户) 发表于 2017-1-2 12:46:36
看看看看

7
soccy(真实交易用户) 发表于 2017-1-2 23:10:34
......

8
kavakava(真实交易用户) 在职认证  发表于 2017-1-3 12:48:39
thanks

9
WFMZZ(真实交易用户) 发表于 2017-1-6 13:55:09
A step-by-step guide to building recommendation engines that are personalized, scalable, and real time
Get to grips with the best tool available on the market to create recommender systems
This hands-on guide shows you how to implement different tools for recommendation engines, and when to use which

10
michaelshyong(真实交易用户) 发表于 2017-1-20 20:07:29
thanks for sharing

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-30 11:02