楼主: 飞天玄舞6
1378 1

[数据挖掘理论与案例] 【独家发布】Mathematical Structures for Computer Graphics [推广有奖]

  • 3关注
  • 31粉丝

VIP1

已卖:3014份资源

学科带头人

13%

(VIP/贵宾)十级

26%

TA的文库  其他...

综合文库

威望
0
论坛币
153870 个
通用积分
4226.5233
学术水平
128 点
热心指数
148 点
信用等级
102 点
经验
76635 点
帖子
1502
精华
0
在线时间
1519 小时
注册时间
2013-12-2
最后登录
2025-11-25

楼主
飞天玄舞6 在职认证  发表于 2017-1-4 19:19:28 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Mathematical Structures for Computer Graphics
QQ截图20170104191458.png


PREFACE xiii
1 Basics 1
1.1 Graphics Pipeline, 2
1.2 Mathematical Descriptions, 4
1.3 Position, 5
1.4 Distance, 8
1.5 Complements and Details, 11
1.5.1 Pythagorean Theorem Continued, 11
1.5.2 Law of Cosines Continued, 12
1.5.3 Law of Sines, 13
1.5.4 Numerical Calculations, 13
1.6 Exercises, 14
1.6.1 Programming Exercises, 16
2 Vector Algebra 17
2.1 Basic Vector Characteristics, 18
2.1.1 Points Versus Vectors, 20
2.1.2 Addition, 20
2.1.3 Scalar Multiplication, 21
2.1.4 Subtraction, 22
2.1.5 Vector Calculations, 22
viii CONTENTS
2.1.6 Properties, 24
2.1.7 Higher Dimensions, 25
2.2 Two Important Products, 25
2.2.1 Dot Product, 25
2.2.2 Cross Product, 29
2.3 Complements and Details, 34
2.3.1 Vector History, 34
2.3.2 More about Points Versus Vectors, 35
2.3.3 Vector Spaces and Affine Spaces, 36
2.4 Exercises, 38
2.4.1 Programming Exercises, 39
3 Vector Geometry 40
3.1 Lines and Planes, 40
3.1.1 Vector Description of Lines, 40
3.1.2 Vector Description of Planes, 44
3.2 Distances, 46
3.2.1 Point to a Line, 46
3.2.2 Point to a Plane, 48
3.2.3 Parallel Planes and Line to a Plane, 48
3.2.4 Line to a Line, 50
3.3 Angles, 52
3.4 Intersections, 54
3.4.1 Intersecting Lines, 54
3.4.2 Lines Intersecting Planes, 56
3.4.3 Intersecting Planes, 57
3.5 Additional Key Applications, 61
3.5.1 Intersection of Line Segments, 61
3.5.2 Intersection of Line and Sphere, 65
3.5.3 Areas and Volumes, 66
3.5.4 Triangle Geometry, 68
3.5.5 Tetrahedron, 69
3.6 Homogeneous Coordinates, 71
3.6.1 Two Dimensions, 72
3.6.2 Three Dimensions, 73
3.7 Complements and Details, 75
3.7.1 Intersection of Three Planes Continued, 75
3.7.2 Homogeneous Coordinates Continued, 77
3.8 Exercises, 79
3.8.1 Programming Exercises, 82
4 Transformations 83
4.1 Types of Transformations, 84
CONTENTS ix
4.2 Linear Transformations, 85
4.2.1 Rotation in Two Dimensions, 88
4.2.2 Reflection in Two dimensions, 90
4.2.3 Scaling in Two Dimensions, 92
4.2.4 Matrix Properties, 93
4.3 Three Dimensions, 95
4.3.1 Rotations in Three Dimensions, 95
4.3.2 Reflections in Three Dimensions, 101
4.3.3 Scaling and Shear in Three Dimensions, 102
4.4 Affine Transformations, 103
4.4.1 Transforming Homogeneous Coordinates, 105
4.4.2 Perspective Transformations, 107
4.4.3 Transforming Normals, 110
4.4.4 Summary, 111
4.5 Complements and Details, 112
4.5.1 Vector Approach to Reflection in an Arbitrary Plane, 113
4.5.2 Vector Approach to Arbitrary Rotations, 115
4.6 Exercises, 121
4.6.1 Programming Exercises, 123
5 Orientation 124
5.1 Cartesian Coordinate Systems, 125
5.2 Cameras, 132
5.2.1 Moving the Camera or Objects, 134
5.2.2 Euler Angles, 137
5.2.3 Quaternions, 141
5.2.4 Quaternion Algebra, 143
5.2.5 Rotations, 145
5.2.6 Interpolation: Slerp, 148
5.2.7 From Euler Angles and Quaternions to Rotation Matrices, 151
5.3 Other Coordinate Systems, 152
5.3.1 Non-orthogonal Axes, 152
5.3.2 Polar, Cylindrical, and Spherical Coordinates, 154
5.3.3 Barycentric Coordinates, 157
5.4 Complements and Details, 158
5.4.1 Historical Note: Descartes, 158
5.4.2 Historical Note: Hamilton, 158
5.4.3 Proof of Quaternion Rotation, 159
5.5 Exercises, 161
5.5.1 Programming Exercises, 163
6 Polygons and Polyhedra 164
6.1 Triangles, 164
x CONTENTS
6.1.1 Barycentric Coordinates, 165
6.1.2 Areas and Barycentric Coordinates, 166
6.1.3 Interpolation, 171
6.1.4 Key Points in a Triangle, 172
6.2 Polygons, 178
6.2.1 Convexity, 179
6.2.2 Angles and Area, 180
6.2.3 Inside and Outside, 184
6.2.4 Triangulation, 187
6.2.5 Delaunay Triangulation, 189
6.3 Polyhedra, 192
6.3.1 Regular Polyhedra, 194
6.3.2 Volume of Polyhedra, 196
6.3.3 Euler’s Formula, 200
6.3.4 Rotational Symmetries, 202
6.4 Complements and Details, 205
6.4.1 Generalized Barycentric Coordinates, 205
6.4.2 Data Structures, 206
6.5 Exercises, 208
6.5.1 Programming Exercises, 211
7 Curves and Surfaces 212
7.1 Curve Descriptions, 213
7.1.1 Lagrange Interpolation, 218
7.1.2 Matrix Form for Curves, 222
7.2 Bézier Curves, 223
7.2.1 Properties for Two-Dimensional Bézier
Curves, 226
7.2.2 Joining Bézier Curve Segments, 228
7.2.3 Three-Dimensional Bézier Curves, 229
7.2.4 Rational Bézier Curves, 230
7.3 B-Splines, 232
7.3.1 Linear Uniform B-Splines, 233
7.3.2 Quadratic Uniform B-Splines, 235
7.3.3 Cubic Uniform B-Splines, 240
7.3.4 B-Spline Properties, 242
7.4 Nurbs, 246
7.5 Surfaces, 250
7.6 Complements and Details, 260
7.6.1 Adding Control Points to Bézier Curves, 260
7.6.2 Quadratic B-Spline Blending Functions, 262
7.7 Exercises, 264
7.7.1 Programming Exercises, 266
CONTENTS xi
8 Visibility 267
8.1 Viewing, 267
8.2 Perspective Transformation, 269
8.2.1 Clipping, 273
8.2.2 Interpolating the z Coordinate, 275
8.3 Hidden Surfaces, 278
8.3.1 Back Face Culling, 281
8.3.2 Painter’s Algorithm, 283
8.3.3 Z-Buffer, 286
8.4 Ray Tracing, 287
8.4.1 Bounding Volumes, 289
8.4.2 Bounding Boxes, 289
8.4.3 Bounding Spheres, 291
8.5 Complements and Details, 293
8.5.1 Frustum Planes, 293
8.5.2 Axes for Bounding Volumes, 294
8.6 Exercises, 297
8.6.1 Programming Exercises, 298
9 Lighting 299
9.1 Color Coordinates, 299
9.2 Elementary Lighting Models, 303
9.2.1 Gouraud and Phong Shading, 307
9.2.2 Shadows, 311
9.2.3 BRDFs in Lighting Models, 315
9.3 Global Illumination, 319
9.3.1 Ray Tracing, 319
9.3.2 Radiosity, 323
9.4 Textures, 325
9.4.1 Mapping, 325
9.4.2 Resolution, 332
9.4.3 Procedural Textures, 333
9.5 Complements and Details, 335
9.5.1 Conversion between RGB and HSV, 335
9.5.2 Shadows on Arbitrary Planes, 336
9.5.3 Derivation of the Radiosity Equation, 337
9.6 Exercises, 339
9.6.1 Programming Exercises, 340
10 Other Paradigms 341
10.1 Pixels, 342
10.1.1 Bresenham Line Algorithm, 342
xii CONTENTS
10.1.2 Anti-Aliasing, 345
10.1.3 Compositing, 347
10.2 Noise, 350
10.2.1 Random Number Generation, 350
10.2.2 Distributions, 351
10.2.3 Sequences of Random Numbers, 353
10.2.4 Uniform and Normal Distributions, 354
10.2.5 Terrain Generation, 356
10.2.6 Noise Generation, 357
10.3 L-Systems, 361
10.3.1 Grammars, 362
10.3.2 Turtle Interpretation, 363
10.3.3 Analysis of Grammars, 365
10.3.4 Extending L-Systems, 367
10.4 Exercises, 368
10.4.1 Programming Exercises, 369
APPENDIX A Geometry and Trigonometry 370
A.1 Triangles, 370
A.2 Angles, 372
A.3 Trigonometric Functions, 373
APPENDIX B Linear Algebra 376
B.1 Systems of Linear Equations, 376
B.1.1 Solving the System, 377
B.2 Matrix Properties, 379
B.3 Vector Spaces, 381
REFERENCES 383
INDEX 387

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Mathematical mathematica Mathematic Structures Structure Vector Versus

本帖被以下文库推荐

strive for the best, prepare for the worst.

沙发
云在遨游(未真实交易用户) 发表于 2017-1-4 19:24:36
非常的不错哦

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-1-19 18:16