楼主: jasonwu24
2160 0

[书籍介绍] Thoughtful Machine Learning with Python: A Test-Driven Approach [推广有奖]

  • 5关注
  • 43粉丝

讲师

98%

还不是VIP/贵宾

-

威望
0
论坛币
58592 个
通用积分
248.3254
学术水平
119 点
热心指数
114 点
信用等级
85 点
经验
22677 点
帖子
344
精华
1
在线时间
505 小时
注册时间
2015-2-15
最后登录
2022-11-18

相似文件 换一批

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
  • 【Title】: Thoughtful Machine Learning with Python: A Test-Driven Approach
  • 【Author】: Matthew Kirk
  • Length: 214 pages
  • Edition: 1
  • Language: English
  • Publisher: O'Reilly Media
  • Publication Date: 2017-02-04
  • ISBN-10: 1491924136
  • ISBN-13: 9781491924136

Gain the confidence you need to apply machine learning in your daily work. With this practical guide, author Matthew Kirk shows you how to integrate and test machine learning algorithms in your code, without the academic subtext.

7.png

true PDF(封面为Early Release,里面内容为true PDF格式) + EPUB + MOBI
Early.Release_OReilly.Thoughtful.Machine.Learning.with.Python.2017.rar (15.5 MB, 需要: 5 个论坛币) 本附件包括:
  • OReilly.Thoughtful.Machine.Learning.with.Python.1491924136_Early.Release.pdf
  • OReilly.Thoughtful.Machine.Learning.with.Python.1491924136_Early.Release.epub
  • OReilly.Thoughtful.Machine.Learning.with.Python.1491924136_Early.Release.mobi
  • FoxEbook.net.txt


Featuring graphs and highlighted code examples throughout, the book features tests with Python’s Numpy, Pandas, Scikit-Learn, and SciPy data science libraries. If you’re a software engineer or business analyst interested in data science, this book will help you:
  • Reference real-world examples to test each algorithm through engaging, hands-on exercises
  • Apply test-driven development (TDD) to write and run tests before you start coding
  • Explore techniques for improving your machine-learning models with data extraction and feature development
  • Watch out for the risks of machine learning, such as underfitting or overfitting data
  • Work with K-Nearest Neighbors, neural networks, clustering, and other algorithms
Table of Contents
Chapter 1. Probably Approximately Correct Software
Chapter 2. A Quick Introduction to Machine Learning
Chapter 3. K-Nearest Neighbors
Chapter 4. Naive Bayesian Classification
Chapter 5. Decision Trees and Random Forests
Chapter 6. Hidden Markov Models
Chapter 7. Support Vector Machines
Chapter 8. Neural Networks
Chapter 9. Clustering
Chapter 10. Improving Models and Data Extraction
Chapter 11. Putting It Together: Conclusion

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Approach Learning Thought earning machine Machine Learning Python

本帖被以下文库推荐

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-6 07:35