楼主: oliyiyi
1163 0

Shortcomings of Deep Learning [推广有奖]

版主

已卖:2995份资源

泰斗

1%

还不是VIP/贵宾

-

TA的文库  其他...

计量文库

威望
7
论坛币
66190 个
通用积分
31671.1867
学术水平
1454 点
热心指数
1573 点
信用等级
1364 点
经验
384134 点
帖子
9629
精华
66
在线时间
5508 小时
注册时间
2007-5-21
最后登录
2025-7-8

初级学术勋章 初级热心勋章 初级信用勋章 中级信用勋章 中级学术勋章 中级热心勋章 高级热心勋章 高级学术勋章 高级信用勋章 特级热心勋章 特级学术勋章 特级信用勋章

楼主
oliyiyi 发表于 2017-1-21 16:43:13 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
By Oren Etzioni, CEO of the Allen AI, Founder of Farecast, Professor at UW, CSE

Deep Learning has been incredibly successful in recent years, but it is still merely a tool for classifying items into categories (or for nonlinear regression).

We have seen outstanding results in mapping images, audio segments, even board positions, into categories with ever-increasing accuracy, but AI needs to go way beyond classification and regression.

Let's talk about AlphaGo, which is a phenomenal technical achievement by the team at DeepMind.

Yet, the overblown claims about the impressive success of AlphaGo are a case of a person climbing to the top of the tree and shouting "I'm on my way to the moon!"

Here's why:
  • AlphaGo relied on a massive amount of labeled data, which is easily available in games, and often unavailable in other contexts. Consider, for example, classifying citations into "influential" versus "not" in Semantic Scholar. While unlabeled data is plentiful, labeled data is difficult to obtain.
  • We don't know how to build sophisticated background knowledge or reasoning capabilities into deep learning systems.
  • AlphaGo relied on a set of manually-crafted neural networks, that have to be changed from application to application.
  • AlphaGo relied on people to specify its input representation and its output target categories--it cannot specify its own.
  • In many cases, even specifying the appropriate categories is difficult due to nuance, ambiguity, etc.
The bottom line is: when we successfully define an objective function and reduce a real-world task to an optimization problem -- our CS "muscles" kick into overdrive, and we can solve it given enough data and a successful representation (sooner or later). However, may problems are ill-structured and require additional analysis to even formalize. For example, how do we formally write down the meaning of a single sentence?

Most of these comments are not specific to AlphaGo or Deep Learning, but are broadly applicable to all supervised learning programs. As Alan Newell said (in a different context), "you can't play 20 questions with nature and win!"

With all due respect to the brilliant Geoff Hinton, thought is not a vector, and AI is not a problem in statistics.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Learning earning coming Learn Short successful beyond recent images about

缺少币币的网友请访问有奖回帖集合
https://bbs.pinggu.org/thread-3990750-1-1.html

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-7 03:12