大数据之数据可视化_大数据
关于大数据的可视化,人们一般的理解是先设想要达到的可视化效果,然后在去寻找相应的数据。下面就是关于大数据之数据可视化的相关介绍。
为了更好的进行可视化,我们将数据分为分类数据、时序数据、空间数据、多元变量数据四大类。
1、分类数据
分类数据是指针反映事物类别的数据。如:用户的设备可以分为Iphone用户和andorid用户两种;支付方式可以分为支付宝、微信、现金支付三种等。诸如此类的分类所得到的数据被称为分类数据。
2、时序数据
时序数据也称时间序列数据,是指同一统一指标按时间顺序记录的数据列。如:每个月的新增用户数量、某公司近十年每年的GMV等。诸如此类按时间顺序来记录的指标对应的数据成为时序数据。
3、空间数据
空间数据是指用来表示空间实体的位置、形状、大小及其分布特征诸多方面信息的数据,它可以用来描述来自现实世界的目标,它具有定位、定性、时间和空间关系等特性。空间数据是一种用点、线、面以及实体等基本空间数据结构来表示人们赖以生存的自然世界的数据。
4、多变量
数据通常以表哥形式的出现,表格中有多个列,每一列代表一个变量,将这份数据就称为多变量数据,多变量常用来研究变量之间的相关性。即用来找出影响某一指标的因素有哪些。
1、 有哪些可视化形式
(1)视觉暗示:
是指通过查看图表就可以与潜意识中的意识进行联系从而得出图表表达的意识。常用的视觉暗示主要有:位置(位置高低)、长度(长短)、角度(大小)、方向(方向上升还是下降)、形状(不同形状代表不同分类)、面积(面积大小)、体积(体积大小)、饱和度(色调的强度,就是颜色的深浅)、色调(不同颜色)。
(2)坐标系:
这里的坐标系和我们之前数学中学到的坐标系是相同的,只不过坐标轴的意义可能稍有不同。常见的坐标系种类有:直角坐标系、极坐标系和地理坐标系。
大家对直角坐标系、极坐标系比较熟悉,这里说一下地理坐标系。
地理坐标系是使用三维球面来定义地球表面位置,以实现通过经纬度对地球表面点位引用的坐标系。但是我们在进行数据可视化的时候一般用投影的方法把其从三维数据转化成二维的平面图形。
(3)标尺:
前面说到的三种坐标系只是定义了展示数据的维度和方向,而标尺的作用是用来衡量不同方向和维度上的大小,其实和我们熟悉的刻度挺像。
(4)背景信息:
此处的背景和我们在语文中学习到的背景是一个概念,是为了说明数据的相关信息(who、what、when、where、why),使数据更加清晰,便于读者更好的理解。
(5)组合组件:
组合组件就是根据目标用途将上面四种信息进行组合。
能够进行可视化的工具有哪些
1、Microsoft Excel
对于这个软件大家应该并不陌生,对于一般的可视化这个软件完全足矣,但是对于一些数据量较大的数据则不太适合。
2、GoogleSpreadsheets
Google Spreadsheets是基于Web的应用程序,它允许使用者创建、更新和修改表格并在线实时分享数据。基于Ajax的程序和微软的Excel和CSV(逗号分隔值)文件是兼容的。表格也可以以超文本链接标记语言(HTML)的格式保存。
3、Tableau Software
Tableau Software现在比较受大家的欢迎,既可以超越Excel做一些稍微复杂的数据分析,又不用像R、Python那种编程语言进行可视化那么复杂。好多人都有推荐这款软件。
4、一些需要编程性语言的工具
R语言、JavaScript、HTML、SVG、CSS、Processing、Python。这里主要是列举一下有哪些编程语言可以实现可视化,具体如何实现需要读者自行学习。我目前主要是在学python的可视化,稍后会分享一篇用python进行可视化的学习笔记。


雷达卡




京公网安备 11010802022788号







