楼主: 花花无忧
6077 3

AMOS请教 [推广有奖]

  • 0关注
  • 0粉丝

小学生

42%

还不是VIP/贵宾

-

威望
0
论坛币
122 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
513 点
帖子
8
精华
0
在线时间
2 小时
注册时间
2006-8-14
最后登录
2014-5-6

楼主
花花无忧 发表于 2009-9-9 10:40:17 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Notes for Model (Group number 1 - Default model)
The following variances are negative. (Group number 1 - Default model)



请教各位高手,运行出这样的结果是什么意思呀?
如何修正呢?
谢谢啦
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:AMOS请教 amos AMO variances following 请教 amos

沙发
huiling2008627 发表于 2009-9-15 16:28:36
我也是这样的问题哈,怎么处理啊?楼上弄好了吗?

藤椅
ttewwcqu 发表于 2009-9-17 10:52:11
说明你的模型有问题。原因有很多。模型是否 underidentified? 检查一下是否有共线性问题。
从理论上看看模型是否可以重新设置。另外可试试用贝叶斯估计方法。

请看看下面的解释-挺有帮助的,虽然是英文(http://faculty.chass.ncsu.edu/ga ... tm#negativevariance

What does it mean when I get negative error variance estimates?

When this occurs, your solution may be arbitrary. AMOS will give an error message saying that your solution is not admissable. LISREL will give an error message "Warning: Theta EPS not positive definite." Because the solution is arbitrary, modification indices, t-values, residuals, and other output cannot be computer or is arbitrary also.

There are several reasons why one may get negative variance estimates.


1. This can occur as a result of high multicollinearity. Rule this out first.

2. Negative estimates may indicate Heywood cases (see below)

3. Even though the true value of the variance is positive, the variability in your data may be large enough to produce a negative estimate. The presence of outliers may be a cause of such variability. Having only one or two measurement variables per latent variable can also cause high standard errors of estimate.

4. Negative estimates may indicate that observations in your data are negatively correlated. See Hocking (1984).

5. Least likely, your SEM program may be flawed. To test this, factor analyze your observed variance/covariance matrix and see if the determinant is greater than zero, meaning it is not singular. If it is singular, you may have used the pairwise option for missing values or used wrong missing data substitution. Assuming the observed matrix is not singular, then factor analyze the implied variance/covariance matrix. If the output contains negative eigenvalues when the observed matrix is not singular, there is a flaw in how the SEM program is computing implied variances and covariances.

For more on causes and handling of negative error variance, see Chen, Bollen, Paxton, Curran, and Kirby (2001).

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-24 23:04