|
mfx报告p值啊
. sysuse auto
(1978 Automobile Data)
. probit foreign mpg weight price
Iteration 0: log likelihood = -45.03321
Iteration 1: log likelihood = -22.14115
Iteration 2: log likelihood = -18.493568
Iteration 3: log likelihood = -17.409067
Iteration 4: log likelihood = -17.167254
Iteration 5: log likelihood = -17.151781
Iteration 6: log likelihood = -17.151715
Probit estimates Number of obs = 74
LR chi2(3) = 55.76
Prob > chi2 = 0.0000
Log likelihood = -17.151715 Pseudo R2 = 0.6191
foreign Coef. Std. Err. z P>z [95% Conf. Interval]
mpg -.0723615 .05565 -1.30 0.193 -.1814334 .0367104
weight -.0038232 .0010392 -3.68 0.000 -.00586 -.0017864
price .0005185 .0001651 3.14 0.002 .000195 .0008421
_cons 8.150001 2.962962 2.75 0.006 2.342702 13.9573
. mfx
Marginal effects after probit
y = Pr(foreign) (predict)
= .04107853
variable dy/dx Std. Err. z P>z [ 95% C.I. ] X
mpg -.0063718 .00759 -0.84 0.401 -.021245 .008501 21.2973
weight -.0003367 .00027 -1.25 0.212 -.000865 .000191 3019.46
price .0000457 .00004 1.27 0.204 -.000025 .000116 6165.26
. logit foreign mpg price
Iteration 0: log likelihood = -45.03321
Iteration 1: log likelihood = -36.694339
Iteration 2: log likelihood = -36.463994
Iteration 3: log likelihood = -36.46219
Iteration 4: log likelihood = -36.462189
Logit estimates Number of obs = 74
LR chi2(2) = 17.14
Prob > chi2 = 0.0002
Log likelihood = -36.462189 Pseudo R2 = 0.1903
foreign Coef. Std. Err. z P>z [95% Conf. Interval]
mpg .2338353 .0671449 3.48 0.000 .1022338 .3654368
price .000266 .0001166 2.28 0.022 .0000375 .0004945
_cons -7.648111 2.043673 -3.74 0.000 -11.65364 -3.642586
. mfx, predict(p)
Marginal effects after logit
y = Pr(foreign) (predict, p)
= .26347633
variable dy/dx Std. Err. z P>z [ 95% C.I. ] X
mpg .0453773 .0131 3.46 0.001 .019702 .071053 21.2973
price .0000516 .00002 2.31 0.021 7.8e-06 .000095 6165.26
|