楼主: kachunwu3
3635 7

[CFA] 原創 !! 2009 年 9月18日 SOA Exam P 机经 [推广有奖]

  • 0关注
  • 1粉丝

硕士生

45%

还不是VIP/贵宾

-

威望
0
论坛币
1824 个
通用积分
3.6865
学术水平
5 点
热心指数
34 点
信用等级
4 点
经验
8392 点
帖子
152
精华
0
在线时间
134 小时
注册时间
2009-7-14
最后登录
2013-1-16

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
2009 918SOA Exam P机经

1)
There are 15 people, 10 are government officials and 5 are non-government officials. Suppose a 4 people committee would be formed. Find the probability of having AT LEAST 3 government officials in the committee.


(Hypergeometric distribution)

Answer: Simply plug in the pmf formula for hypergeometric distribution

Let n be number of government officials inside the committee.

P (n = 3) = (10C3 * 5C1) / 15C4 = 0.43956
P (n = 4) = (10C4) / 15C4 = 0.1538
So that, P (n >= 3) = 0.43956 + 0.1538 = 0.5934

2)
Suppose a machine has two parts, X and Y, the Y would be functioning after X has break down, and the machine would be out of order if Y has broken down (after X’s failure). The joint probability density function of X and Y is given by:


f(x,y) = e ^ (0.8x + 0.4y), x > 0 and y > 0, where x and y follow exponential distribution.

Find the expected life (in years) of X + Y.

Answer:
Using mean of exponential distribution function, 1 / 0.8 + 1 / 0.4 = 3.75 (years)

3)
The probability density function (f(x)) of X is given by


| x | / 10 for -2 < x < 4
0 otherwise

Find the expected value of x.

Answer:

Decompose | x | into 2 parts,
If -2 < x < 0, | x | = - x
0 < x < 4, | x | = x

Then using E(x) = integration of x * f(x) with appropriate bounds can find the answer easily.


4)

Suppose there are three independent events, namely X1 X2 X3. They all follow exponential distribution with mean 2. Find the probability that the maximum of these 3 events would not exceed a constant, e.g. K.


Solution flow: Using F(a) = 1 – P (X > a) can easily solve the problem.

Since X1 X2 X3 are independent events, as long as the every event would not exceed K, then the maximum of them would not exceed K.


So that:
P (Max (x1,x2,x3) <= K) = P(X1 <=K) * P (X2 <=K) * P (X3 <= K) (independence).

5)

Use normal approximation to approximate binomial distribution (with continuity correction)


6)
(partial)


The joint distribution of a couple’s life is given by

f(x,y) = e ^ ( 0.015x + 0.014y ), x and y follows exponential distribution.

Calculate: Variance of (x) given y > 25

(This is the problem of joint distribution and conditional variance)

我觉得那个郭玉峰( Guo Yufeng)manual挺好的,缺陷就是比考试要真實深一些,

Gamma, beta, Pareto, Weibull and bivariate normal distribution 全沒出現, 可以完全不理!

另外 hypergeometric distribution 只要懂 pmf 即可.

重点是 exponential distribution, 一定要熟記 mean variance 及積分捷徑! 因為共計有九題 ( 30%) 涉及 exponential distriubution.

Marginal density / conditional density 也要用到
要畫熟 2D-region for solving joint density function.

希望對大家有用!!

心得: 我全做 SOA sample questions , 我做了 2 ,真考有3 - 4 條解題思路完全一樣!

+ Guo Yufeng P Manual

(exclude chapters of Gamma, beta, Pareto, Weibull, Chi-Square AND bivariate normal distribution, joint moment generating function, Univariate & joint order statistics, Markov's inequality , "Risk and Insurance")

P.S 我以前是市塲学 (marketing) , 數学底子一般也 unofficially 過了 , good luck to all!! Thanks god too!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Exam P Exam SOA distribution Probability SOA Exam

已有 1 人评分经验 论坛币 热心指数 收起 理由
clzu + 40 + 20 + 1 对论坛有贡献

总评分: 经验 + 40  论坛币 + 20  热心指数 + 1   查看全部评分

沙发
Kelly96886 发表于 2009-10-5 21:01:20 |只看作者 |坛友微信交流群
太牛了,顶

使用道具

藤椅
joseph0729 在职认证  发表于 2009-10-8 11:35:23 |只看作者 |坛友微信交流群
以史为鉴。

使用道具

板凳
猫的天使 在职认证  发表于 2009-10-8 11:51:01 |只看作者 |坛友微信交流群
太谢谢了!我11月要考,很有用~

使用道具

报纸
dancey333 发表于 2009-10-13 05:55:33 |只看作者 |坛友微信交流群
谢谢分享!看来我考P也有望了。。。

使用道具

地板
kachunwu3 发表于 2009-10-15 00:30:17 |只看作者 |坛友微信交流群
一定有希望的! Best Wishes!!~

使用道具

7
yolanda414 发表于 2009-11-9 19:57:17 |只看作者 |坛友微信交流群
非常感谢!有底多了

使用道具

8
hpwkj2 发表于 2012-3-19 12:42:39 |只看作者 |坛友微信交流群
好棒的总结!多谢

使用道具

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 20:32