247 0

[英文文献] Generating global crop distribution maps: from census to grid [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

学前班

0%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
10 点
帖子
0
精华
0
在线时间
0 小时
注册时间
2020-9-21
最后登录
2020-9-21

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文文献:Generating global crop distribution maps: from census to grid
英文文献作者:You, Liangzhi,Wood, Stanley,Wood-Sichra, Ulrike
英文文献摘要:
In order to evaluate food security, technology potential and the environmental impacts of production in a strategic and regional context, it is critical to have reliable information on the spatial distribution and coincidence of people, agricultural production, and environmental services. This paper proposes a spatial allocation model for generating highly disaggregated, crop-specific production data by a triangulation of any and all relevant background and partial information. This includes national or sub-national crop production statistics, satellite data on land cover, maps of irrigated areas, biophysical crop suitability assessments, population density, secondary data on irrigation and rainfed production systems, cropping intensity, and crop prices. This information is compiled and integrated to generate "prior" estimates of the spatial distribution of individual crops. Priors are then submitted to an optimization model that uses cross-entropy principles and area and production accounting constraints to simultaneously allocate crops into the individual pixels of a GIS database. The result for each pixel (notionally of any size, but typically from 25 to 100 square km) is the area and production of each crop produced, split by the shares grown under irrigated, high-input rainfed, low-input rainfed conditions (each with distinct yield levels). Tested in Latin America and sub-Saharan Africa, the spatial allocation model is applied here to generate a global distribution of crop area and production for 20 major crops (wheat, rice, maize, barley, millet, sorghum, potato, sweet potato, cassava and yams, plantain and banana, soybean, dry beans, other pulse, sugar cane, sugar beets, coffee, cotton, other fibres, groundnuts, and other oil crops). The detailed spatial datasets represent a truly unique and extremely rich platform for exploring the social, economic and environmental consequences of agricultural production in a strategic policy context.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-4 10:51