>data.new<-data.frame(lncpi,lnneer)
>var<-VAR(data.new,lag.max=2,ic="AIC")
> summary(var)
VAR Estimation Results:
=========================
Endogenous variables: lncpi, lnneer
Deterministic variables: const
Sample size: 135
Log Likelihood: 873.227
Roots of the characteristic polynomial:
0.9621 0.9621 0.3829 0.1847
Call:
VAR(y = data.new, lag.max = 2, ic = "AIC")
Estimation results for equation lncpi:
======================================
lncpi = lncpi.l1 + lnneer.l1 + lncpi.l2 + lnneer.l2 + const
Estimate Std. Error t value Pr(>|t|)
lncpi.l1 0.80917 0.08578 9.433 <2e-16 ***
lnneer.l1 -0.09248 0.04705 -1.965 0.0515 .
lncpi.l2 0.12907 0.08483 1.521 0.1306
lnneer.l2 0.08381 0.04712 1.779 0.0777 .
const 0.32677 0.15855 2.061 0.0413 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.007369 on 130 degrees of freedom
Multiple R-Squared: 0.8791, Adjusted R-squared: 0.8754
F-statistic: 236.3 on 4 and 130 DF, p-value: < 2.2e-16
Estimation results for equation lnneer:
=======================================
lnneer = lncpi.l1 + lnneer.l1 + lncpi.l2 + lnneer.l2 + const
Estimate Std. Error t value Pr(>|t|)
lncpi.l1 -0.18430 0.14954 -1.232 0.220030
lnneer.l1 1.31275 0.08203 16.003 < 2e-16 ***
lncpi.l2 0.28850 0.14789 1.951 0.053238 .
lnneer.l2 -0.31998 0.08215 -3.895 0.000156 ***
const -0.44726 0.27641 -1.618 0.108065
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.01285 on 130 degrees of freedom
Multiple R-Squared: 0.9908, Adjusted R-squared: 0.9905
F-statistic: 3504 on 4 and 130 DF, p-value: < 2.2e-16
Covariance matrix of residuals:
lncpi lnneer
lncpi 5.430e-05 7.761e-06
lnneer 7.761e-06 1.650e-04
Correlation matrix of residuals:
lncpi lnneer
lncpi 1.00000 0.08198
lnneer 0.08198 1.00000
R 运行的结果如上,那么拟合出的VAR方程是多少呢?在线等!


雷达卡



京公网安备 11010802022788号







