楼主: Reader's
725 0

【GitHub】Practical Predictive Analytics [推广有奖]

  • 0关注
  • 0粉丝

已卖:1522份资源

博士生

59%

还不是VIP/贵宾

-

TA的文库  其他...

可解釋的機器學習

Operations Research(运筹学)

国际金融(Finance)

威望
0
论坛币
41203 个
通用积分
2.6773
学术水平
7 点
热心指数
5 点
信用等级
5 点
经验
2201 点
帖子
198
精华
1
在线时间
36 小时
注册时间
2015-6-1
最后登录
2024-3-3

楼主
Reader's 发表于 2017-8-13 05:10:40 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Practical Predictive Analytics

https://github.com/PacktPublishing/Practical-Predictive-Analytics


This is the code repository for Practical Predictive Analytics, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish.

About the Book

This is the go-to book for anyone interested in the steps needed to develop predictive analytics solutions with examples from the world of marketing, healthcare, and retail. We'll get started with a brief history of predictive analytics and learn about different roles and functions people play within a predictive analytics project. Then, we will learn about various ways of installing R along with their pros and cons, combined with a step-by-step installation of RStudio, and a description of the best practices for organizing your projects.

On completing the installation, we will begin to acquire the skills necessary to input, clean, and prepare your data for modeling. We will learn the six specific steps needed to implement and successfully deploy a predictive model starting from asking the right questions through model development and ending with deploying your predictive model into production. We will learn why collaboration is important and how agile iterative modeling cycles can increase your chances of developing and deploying the best successful model.

Instructions and Navigation

All of the code is organized into folders. Each folder starts with a number followed by the application name. For example, Chapter02.

The code will look like the following:

#run the modelmodel <- OneR(train_data, frisked ~ ., verbose = TRUE)#summarize the modelsummary(model)#run the sql function from the SparkR packageSparkR::sql("SELECT sample_bin , count(*)\FROM out_tbl group by sample_bin")

This is neither an introductory predictive analytics book, not an introductory book for learning R or Spark. Some knowledge of base R data manipulation techniques is expected. Some prior knowledge of predictive analytics is useful. As mentioned earlier, knowledge of basic statistical concepts such as hypothesis testing, correlation, means, standard deviations, and p-values will also help you navigate this book.

Related ProductsSuggestions and Feedback

Click here if you have any feedback or suggestions.


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-2-14 05:06