楼主: AIworld
909 0

基于机器学习的中文微博情感分类实证研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2017-9-15 11:00:07 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:使用三种机器学习算法、三种特征选取算法以及三种特征项权重计算方法对微博进行了情感分类的实证研究。实验结果表明,针对不同的特征权重计算方法,支持向量机(SVM)和贝叶斯分类算法(NaIve Bayes)各有优势,信息增益(IG)特征选取方法相比于其他的方法效果明显要好。综合考虑三种因素,采用SVM和IG,以及TF-IDF(Term Frequency-Inverse Document Frequency)作为特征项权重,三者结合对微博的情感分类效果最好。针对电影领域,比较了微博评论和普通评论之间分类模型的通用性,实验结果表明情感分类性能依赖于评论的风格。

原文链接:http://www.cqvip.com/QK/91690X/201201/40404238.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:实证研究 机器学习 学习的 Frequency Document 微博 情感分类 机器学习 特征选取 特征项权重

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-22 03:10