楼主: 人工智能-AI
635 0

基于机器学习方法的丙型肝炎病毒非结构蛋白5B聚合酶抑制剂活性预测(英文) [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2017-9-15 15:40:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:在丙型肝炎病毒(HCV)的基因复制和蛋白质成熟的过程中,非结构蛋白5B(NS5B)作为RNA依赖的RNA聚合酶起到了重要的作用.抑制NS5B聚合酶可以阻止丙型肝炎病毒的RNA复制,因此成为一种治疗丙型肝炎的有效方法.通过计算机方法进行虚拟筛选和预测NS5B聚合酶抑制剂已经变得越来越重要.本文主要采用机器学习方法(支持向量机(SVM)、k-最近相邻法(k-NN)和C4.5决策树(C4.5DT))对已知的丙型肝炎病毒NS5B蛋白酶抑制剂与非抑制剂建立分类预测模型.1248个结构多样性化合物(552个NS5B抑制剂与696个非NS5B抑制剂)被用于测试分类预测系统,并用递归变量消除法选择与NS5B抑制剂相关的性质描述符以提高预测精度.独立验证集的总预测精度为84.1%-85.0%,NS5B抑制剂的预测精度为81.4%-91.7%,非NS5B抑制剂的预测精度为78.2%-87.2%.其中支持向量机给出最好的NS5B抑制剂预测精度(91.7%);C4.5决策树给出最好的非NS5B抑制剂预测精度(87.2%);k-最近相邻法给出最好的总预测精度(85.0%).研究表明机器学习方法可以有效预测未知数据集中潜在的NS5B抑制剂,并有助于发现与其相关的分子描述符.

原文链接:http://www.cqvip.com/Main/Detail.aspx?id=38093756

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:丙型肝炎 学习方法 肝炎病毒 机器学习 抑制剂 机器学习方法 分子描述符 递归变量消除法 支持向量机 丙型肝炎病毒

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-27 12:12