楼主: 人工智能-AI
717 0

高光谱与机器学习相结合的大白菜种子品种鉴别研究 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2017-9-15 20:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:提出了基于高光谱信息的大白菜种子品种分类识别方法。利用近红外高光谱图像采集系统采集了八种共239个大白菜种子样本;提取15pixel×15pixel感兴趣区域平均光谱反射率信息作为样本信息;采用多元散射校正预处理方法对光谱进行消噪;验证了Ada-Boost算法、极限学习机(extreme learning machine,ELM)、随机森林(random forest,RF)和支持向量机(support vector machine,SVM)四种分类算法的分类判别效果。为了简化输入变量,通过载荷系数分析选取了10个大白菜种子品种分类判别的特征波长。实验结果表明,四种分类算法基于全波段的分类识别对81个预测样本的正确区分率均超过90%,最优的分类判别模型为ELM和RF,识别正确率达到了100%;以10个特征波长的分类判别精度略有下降,但输入变量大幅减少,提高了信息处理效率,其中最优分类判别模型为EW-ELM模型,判别正确率为100%,因此以载荷系数选取的特征波长是有效的。利用高光谱结合机器学习对大白菜种子品种进行快速、无损分类识别是可行的,为大白菜种子批量化在线检测提供了一种新的方法。

原文链接:http://www.cqvip.com/QK/90993X/201409/71856578504849524857485255.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:机器学习 大白菜 相结合 Learning machine 高光谱 Ada-Boost算法 极限学习机 随机森林 支持向量机

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 02:53