楼主: 人工智能-AI
635 0

基于机器学习的域名数据监控方法 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2017-9-16 05:40:04 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:域名资源记录被篡改的问题严重危害域名应用。由于该问题具有较强的隐蔽性,亟需一种快速且有效的发现域名危险变化的方法。为此,提出一种基于机器学习算法的域名数据监控方法。在一定数量的域名中选取出资源记录发生变化的域名,通过分析其相关信息生成一个由域名字面特征、正反匹配度等属性组成的元组。以变化是否危险为依据进行类标签人工标记,每个元组和其类标签组成训练集中的一个实例。由分析训练集决策树算法和支持向量机算法建立检测域名系统数据危险变化的分类器。通过十折交叉法验证2个分类器,发现其在域名危险变化判断上具有较强的能力,正确率的加权均值分别达到73.8%和82.4%。

原文链接:http://www.cqvip.com/QK/95200X/201409/662297528.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:数据监控 机器学习 学习的 机器学习算法 支持向量机 域名系统 安全 机器学习 域名系统监控 决策树

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 23:46