楼主: 论文库
1581 1

UGES反向传导算法:一种新的小样本深度机器学习模型 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2017-9-16 09:00:05 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对传统深度学习算法在样本不足时易出现过拟合的问题,提出了一类新的小样本深度学习模型:UGES反向传导模型。其基本思路是:在保留深层结构的同时,压缩需要学习参数的数量。作为一种与误差反向传导算法相容的间接编码模型,该算法对权值的随机分布特性进行重新编码,打破了不同隐含层之间的隔阂,并使用变分贝叶斯学习对网络进行全局训练。新模型的参数数目不再与输入变量维数及网络结构大小相关,同时强迫权值对于一定程度的扰动具有鲁棒性。最后,将所提出的算法用于外包软件项目风险识别这一典型的多维小样本问题中。对比实验表明,该模型达到了93.3%的样本外准确率,不仅保留了深度模型非线性表达能力,亦具备了小样本下优秀的泛化能力。

原文链接:http://www.cqvip.com/QK/92891X/201506/667665861.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:机器学习 小样本 GES 贝叶斯学习 cqvip 深度机器学习 不确定性间接编码 变分贝叶斯学习 小样本问题 外包软件项目风险识别

沙发
钱学森64 发表于 2017-9-16 09:02:36
谢谢分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-27 06:47