楼主: a智多星
1082 0

基于机器学习的水稻发育期预测模型构建 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2017-9-16 13:40:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:采用机器学习中的支持向量机(SVM)方法,建立以适应区域尺度生产指导为目的的水稻发育期预测模型。通过整合水稻发育期数据和气象数据,构建训练集与测试集,并应用SVM算法建立针对5个不同发育阶段,应用2种不同样本构建方法的10个发育期预测模型。对其逐一进行评估,最终挑选出具有最佳预测效果的模型作为研究成果。结果表明:采用第1类样本(提前150d的样本)生成策略的5个发育期模型,其预测精度均大于80%,甚至达到95%的水平;而采用第2类样本(提前30d的样本)生成策略的5个发育期模型,其精度普遍在80%左右。与此同时,对这2种样本构建方法分别进行了敏感性及假阳性比较。结果表明:虽前者敏感性高于后者,但其假阳性也高,预测误差在9d左右,而第2类样本的预测误差则能控制在4~5d内,更符合模型构建的要求。采用第2类样本生成策略进行发育期模型的研究可获得更准确的预测结果。

原文链接:http://www.cqvip.com/QK/95188B/201203/43777089.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:机器学习 预测模型 模型构建 学习的 支持向量机 水稻 发育期模型

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-4 18:31