楼主: a智多星
1021 0

基于机器学习的自适应光伏超短期出力预测模型 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2017-9-15 12:20:04 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:由于当前国内对太阳辐射强度和云量信息的预报能力较低,气象数据的引入对光伏直接预测法的预测精度提高有限。为解决此问题,基于历史出力数据自身特征的挖掘来提高预测精度,提出一种具有自适应能力的光伏超短期出力预测模型。该模型首先利用已有历史出力数据的小波分析和特征分析结果训练支持向量机(support vector machine,SVM)分类器,通过已建立的SVM分类器利用前30 min的光伏出力数据预测之后15 min的出力曲线类型,最后结合曲线类型从自回归与滑动平均模型(auto-regressive and moving average model,ARMA)和神经网络模型(artificial neural network mode,ANN)中选取出合适的方法对光伏出力进行预测。对ARMA、ANN和自适应模型进行了对比实验,结果表明:所提的自适应预测模型在均方根误差(root mean square error,RMSE)、平均绝对百分比误差(mean absolute percentage error,MAPE)和希尔不等系数(Theil inequality coefficient,TIC)上性能最好。

原文链接:http://www.cqvip.com/QK/91996X/201502/663687643.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:预测模型 机器学习 学习的 coefficient Artificial 自适应预测 自回归和滑动平均模型 神经网络 小波分析 超短期光伏出力预测

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 07:54