楼主: AIworld
1165 0

基于机器学习的网络流量分类算法分析研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2017-9-16 17:40:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:基于应用的流量分类在网络安全和管理中具有非常重要的作用。传统流量分类大部分是基于端口的预测方法和基于有效载荷的深度检测方法。由于当前网络环境中各种隐私问题以及基于动态端口和加密的应用,传统的网络流量分类策略的有效性已经逐步下降,目前主要集中在基于机器学习技术的流量分类模型进行研究。本文对各种基于机器学习算法的流量分类的比较,如贝叶斯网络(Bayes Net)、朴素贝叶斯(Naive Bayes)、基于RBF的SVM流量分类和基于遗传算法的SVM(GaSVM)流量分类等。这些算法分别使用了全特征选择和优化后的特征集合,实验结果表明基于遗传算法的SVM流量分类精度较高,并在使用主成分特征也可以达到很高的精度。

原文链接:http://www.cqvip.com/QK/83286X/201702/671869207.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:算法分析 机器学习 分类算法 网络流 学习的 贝叶斯网络 朴素贝叶斯 机器学习 遗传算法 SVM

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 05:51