楼主: 论文库
803 0

基于多标签RBF神经网络的电能质量复合扰动分类方法 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2017-9-20 19:20:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:在径向基(RBF)神经网络和C-均值聚类算法的基础上,提出一种适用于电能质量复合扰动分类的多标签排位分类算法—多标签径向基函数法(ML-RBF)。首先,对常见的电能质量扰动及其组合而成的复合扰动进行离散小波分解,提取各层分解系数的规范能量熵作为特征向量;然后采用C-均值聚类算法将所得的特征向量映射为RBF神经网络的输入;最后通过RBF神经网络对该电能质量复合扰动类型进行预测。仿真实验结果表明,在不同的噪声条件下,ML-RBF可以有效分类识别电能质量复合扰动。

原文链接:http://www.cqvip.com/QK/94183X/201108/39154588.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:神经网络 神经网 RBF cqvip 特征向量 电能质量 多标签分类 径向基函数 小波变换 C-均值聚类

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-1 02:59