楼主: AIworld
817 0

基于RBF神经网络的土壤铬含量空间预测 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2017-9-20 17:20:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:以广东省增城市为实验基地,采用随机采样的方法采集土壤铬含量样点,并将其分为训练数据集和检验数据集。设计4种样点布局方案,对前三组数据用RBF神经网络方法进行土壤铬含量插值,分析预测误差。研究发现,当样点较少时,RBF神经网络方法的插值结果较精确。而当样点数据为50时,误差较大,不能满足插值要求。通过插值结果的对比发现,较传统的统计学插值方法,RBF神经网络方法克服了平滑效应,特别是在数据较少的情况下,进行空间预测效果较好,是一种适用范围更广的插值方法。

原文链接:http://www.cqvip.com/QK/95809X/201301/44639080.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:神经网络 神经网 RBF cqvip 训练数据集 RBF神经网络 土壤属性 空间预测 克里格插值

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-9 07:16