楼主: 论文库
671 0

基于Sigmoid函数参数调整的双隐层BP神经网络的板形预测 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2017-9-22 04:20:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:提出一种改进的BP神经网络处理板形缺陷数据的方法,建立双隐层BP神经网络模型,并对Sigmoid激活函数的形状进行调节。将其应用到冷轧的板形缺陷识别中,与利用Levenberg-Marquardt规则训练的BP神经网络预测结果作对比,表明该方法不仅有效地减少双隐层BP网络的学习时间,同时改善了网络的泛化能力,有利于板形缺陷在线识别。

原文链接:http://www.cqvip.com/Main/Detail.aspx?id=36065766

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:BP神经网络 神经网络 GMO 神经网 marquardt 板形识别 双隐层BP神经网络 SIGMOID函数 L-M优化算法

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-22 19:21