楼主: DL-er
910 0

基于分子描述符和机器学习方法预测和虚拟筛选乳腺癌靶向蛋白HEC1抑制剂 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2017-9-24 15:40:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:HEC1(癌症高表达蛋白)是纺锤体检查点控制、着丝粒功能、细胞存活的关键的有丝分裂调节器,与原发性乳腺癌的不良预后有关.筛选具有高亲和力的HEC1新型抑制剂对探索乳腺癌的靶向治疗具有重要意义.本文从结构多样性的化合物库中筛选HEC1抑制剂.通过对分子描述符的特征筛选,采用支持向量机(SVM)和随机森林(RF)方法分别对HEC1抑制剂和非抑制剂建立了分类模型.经对比,RF模型显示了更好的预测精度.我们采用RF模型对HEC1抑制剂进行了虚拟筛选,从"in-house"实体库筛选得到2个潜在的HEC1抑制剂分子.随后对筛出的化合物进行了体外活性实验,发现对乳腺癌细胞株MDA-MB-468和MDA-MB-231均有一定程度的抗肿瘤活性.研究结果表明,机器学习方法对于设计和虚拟筛选HEC1抑制剂有良好的效果.

原文链接:http://www.cqvip.com/QK/92644X/201509/665934773.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:机器学习 学习方法 HEC 抑制剂 乳腺癌 HEC1 选择性抑制剂 机器学习方法 支持向量机 随机森林

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-4 12:14