楼主: a智多星
553 0

基于机器学习的SMN可靠性分析及量测误差建模 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对复杂环境下景象匹配导航匹配概率不易实时统计以及量测误差统计特性不确定,提出基于机器学习的景象匹配可靠性分析及量测误差建模方法。首先建立基于机器学习的匹配概率及误差统计特性建模算法框架;然后以速高比变化带来的运动模糊为分析对象,选取支持向量机作为机器学习方法,定义匹配特征指标以及运动模糊下的匹配概率,给出景象匹配量测误差统计分析方法,并通过假设检验方法对景象匹配量测误差进行零均值检验;进一步在google earth制备的大样本数据库下完成匹配性能统计分析,以运动模糊、匹配得到的平均最高峰和平均峰值比作为支持向量机输入,统计得出的匹配概率和误差参数,即均值及方差作为支持向量机输出,通过训练得到匹配概率和景象匹配量测误差参数预测模型;最后根据该模型预测实时图的匹配概率和景象匹配量测误差参数,分析统计了不同模糊大小下实时图的匹配概率和景象匹配量测误差参数预测精度,结果表明:运动模糊小于40个像素时,阈值为5个像素和10个像素时匹配概率预测值与统计值的均方误差分别小于0.004和0.001,方差预测值与统计值的均方误差小于1个像素。

原文链接:http://www.cqvip.com/QK/91782X/201602/668693779.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:可靠性分析 机器学习 可靠性 学习的 统计分析方法 景象匹配 运动模糊 支持向量机 匹配概率 量测误差建模

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加JingGuanBbs
拉您进交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-5 22:03