楼主: 人工智能-AI
721 0

信息熵度量的离群数据挖掘算法 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2017-9-26 06:40:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:离群数据挖掘是为了找出隐含在海量数据中相对稀疏而孤立的异常数据模式,但传统的离群数据挖掘方法受人为因素影响较大.通过引人基于信息熵的离群度量因子,给出一种离群数据挖掘新算法.该算法先利用信息熵计算每个数据对象的离群度量因子,然后通过离群度量因子来衡量每个对象的离群程度,进而检测离群数据,有效地消除了人为主观因素对离群检测的影响,并能很好地解释离群点的含义.最后,采用UCI和恒星光谱数据作为实验数据,通过对实验的分析,验证了该算法的可行性和有效性.

原文链接:http://www.cqvip.com/Main/Detail.aspx?id=33744162

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:数据挖掘算法 数据挖掘 信息熵 数据挖掘方法 detail 离群数据 信息熵 离群度量因子 数据挖掘

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-9 10:39