楼主: AIworld
591 0

数据挖掘中关联弱化问题的解决方法分析 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1434
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2017-9-26 19:40:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:当前的支持向量机和均值聚类等数据挖掘算法中,几乎都是依靠数据之间的关联性来完成数据匹配。一旦数据库中含有大量的冗余数据,将造成数据之间的相关性降低,关联性被破坏,导致传统的数据挖掘算法效率降低。为了避免上述缺陷,提出了一种弱化关联规则修补挖掘算法。利用弱聚类方法,在数据选择过程中,不将所有的元素都进行初始分类处理,只计算某一元素属于某一个类别的概率,确定多个弱聚类中心,计算不同数据之间的弱聚类关联性,从而实现关联规则较弱的冗余环境下准确的数据挖掘。实验结果表明,这种算法能够有效提高海量冗余环境下的数据挖掘效率,取得了令人满意的效果。

原文链接:http://www.cqvip.com/QK/92817X/201308/46861864.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:解决方法 数据挖掘 数据挖掘算法 cqvip 支持向量机 海量冗余 数据挖掘 关联规则

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-16 01:51