楼主: 论文库
801 0

基于卷积神经网络的CO2焊接熔池图像状态识别方法 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2017-9-28 12:20:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:为了通过熔池图像对焊接状态进行判断,将卷积神经网络引入到CO2焊接熔池图像状态识别中,提出了一种CO2焊接熔池状态识别卷积神经网络CNN-M。该网络使用简单预处理的熔池图像作为输入向量,避免了人工提取图像特征的主观性对识别率的不良影响。同时,CNN-M采用了Re LU激活函数、随机Dropout及SVM分类器来降低样本集稀少可能导致的网络过拟合现象。试验结果表明,和人工提取熔池特征状态作为输入向量的BP神经网络相比,CNN-M在识别率及识别速度方面均体现出了更好的性能,其良好的泛化能力能够满足在线熔池状态监控的要求。

原文链接:http://www.cqvip.com/QK/91554X/201706/672630162.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:识别方法 神经网络 CO2 神经网 BP神经网络 焊接熔池 卷积神经网络 状态识别

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 21:01