楼主: AIworld
689 0

面向机器学习的相对变换 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2017-9-28 23:40:07 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:机器学习常常面临数据稀疏和数据噪音问题.根据认知的相对性规律提出了相对变换方法,证明了相对变换是非线性的放大变换,可提高数据之间的可区分性.同时在一定条件下相对变换还能抑制噪音,并使稀疏的数据变得相对密集.通过相对变换将数据的原始空间变换到相对空间后,在相对空间中度量数据的相似性或距离更加符合人们的直觉,从而提高机器学习的性能.理论分析和实践验证了所提方法的普适性和有效性.

原文链接:http://d.wanfangdata.com.cn/Periodical/jsjyjyfz200804006

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:机器学习 学习的 wanfangdata periodic wanfang 机器学习 认知规律 相对变换 噪音数据 稀疏数据

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-25 00:45