楼主: DL-er
695 0

基于机器学习的水质COD预测方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2017-9-29 00:20:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:运用紫外光谱进行水质有机污染物浓度(化学耗氧量(COD))的检测,必须建立紫外光谱数据与COD值之间的数学模型.运用机器学习方法中的LM-BP神经网络和支持向量机,建立了紫外多波段光谱数据与COD值的相关性模型,讨论了在LM-BP神经网络建模中网络结构选择、输入数据处理和训练程度控制,以及在支持向量机建模中核函数及其参数选择等问题.对某种水样的紫外多波段光谱,分别运用最小二乘法、LM-BP神经网络、支持向量机的相关性模型进行COD预测.结果表明,2种机器学习方法的预测能力明显优于最小二乘法,能够得到满意的预测精度,为运用物理方法解决化学量测量中普遍存在的相关性问题,提供了实际可行的解决方案.

原文链接:http://d.wanfangdata.com.cn/Periodical/zjdxxb-gx200805013

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:预测方法 机器学习 COD 学习的 wanfangdata 水质COD 机器学习 相关性模型 LM-BP神经网络 支持向量机

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-24 22:14