摘要:本文的视频人脸检测识别方法的基本设计思想是,在给出一段视频文件以及这个视频文件的字幕和剧本之后,可以自动的对视频中的人物进行检测和识别,不需要任何的训练样本。视频人脸检测识别方法主要由四个部分组成:字幕剧本融合部分,人脸检测部分,样本集自动生成部分和基于深度学习的人脸识别部分。本文将深度学习算法引入到了视频人脸识别中来,有两方面的重要意义,一方面,视频人脸的识别要求算法具备一定的抗干扰能力,并且能够保证一定的实时性,本文的实验与分析表明,深度学习算法具备这方面的要求;另一方面,从深度学习算法特性的角度来说,深度学习算法最大的缺点就是构造深度模型需要大量的样本,这很大程度上限制了深度学习算法的应用,然而本文所设计的基于视频的人脸检测模块可以轻松的产生数万、数十万的样本,从而满足了深度学习算法的大样本集要求。 基于深度学习模型的人脸识别部分是整个系统的重点,这一部分主要有两方面的意义:一,经历了视频人脸的检测部分之后,虽然视频人脸集合中人脸的纯度有了很大的提升,但是依然会存在一些杂质,因此必须通过识别模块来进一步的过滤掉人脸集合中的杂质;二,通过视频所得到的帧文件中,经常会出现多张人脸同时出现的情况,在这种情况下,视频人脸的检测部分是无法将说话者与人脸进行对应的,必须通过识别模块才能区分出一个帧中的多个人脸。 基于深度学习模型的人脸识别部分主要包含三个模块:数据预处理模块、深度学习模块和识别模块。数据预处理模块主要由数据整合和构造数据立方体两个部分组成。深度学习模块通过两个具体过程来实现:RBM调节和深度模型的反馈微调。RBM的调节过程是自下而上的各个层间的调节过程,以这种方式来初始化整个深度模型的系统权值,而深度模型的反馈微调,首先进行自下而上的识别模型转换,然后再进行自上而下的生成模型转换,最后通过不同层次之间的不断调节,使生成模型可以重构出具有较低误差的原样本,这样就得到了此样本的本质特征,即深度模型的最高抽象表示形式。经过深度学习模型的处理,可以得到降维之后的样本特征,在此基础上运用识别模块,本文中所采用的识别方法是人工神经网络的识别方法。
原文链接:http://d.wanfangdata.com.cn/Thesis/D420293
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)