楼主: 论文库
539 0

溢出代码和访存压力敏感的快速机器学习: [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2017-10-25 20:40:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:基于遗传算法提出了溢出代码和访存压力敏感的机器学习来调试寄存器分配的权值函数。不同于以往采用目标程序的运行时间作为适应值,通过静态分析寄存器分配产生的溢出代码和基本块中的访存压力来构建适应值,以减少学习时间。这些分析被限定在热点函数中,在保证适应值精度的同时进一步加快了学习速度。实验表明,快速学习仅需要考虑热点函数的编译时间,整个CPU2000CINT测试集在5h内即可学习完毕。大部分CPU2000CINT测试例子的性能得到了提高。其中perlbmk的性能提升最高可达到7.2%。

原文链接:http://www.cqvip.com//QK/93231X/200706/24640342.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:机器学习 cqvip 静态分析 运行时间 遗传算法 机器学习 寄存器分配 溢出代码 访存压力

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-10 05:42