楼主: DL-er
649 0

基于向量空间模型的有导词义消歧 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2017-10-27 10:00:11 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:词义消歧一直是自然语言理解中的一个关键问题,该问题解决的好坏直接关系到自然语言处理中诸多应用问题的效果优劣.由于自然语言知识表示的困难,在手工规则的词义消歧难以达到理想效果的情况下,各种有导机器学习方法被应用于词义消歧任务中.借鉴前人的成果引入信息检索领域中向量空间模型文档词语权重计算技术来解决多义词义项的知识表示问题,并提出了上下文位置权重的计算方法,给出了一种基于向量空间模型的词义消歧有导机器学习方法.该方法将多义词的义项和上下文分别映射到向量空间中,通过计算多义词上下文向量与义项向量的距离,采用k-NN(k=1)方法来确定上下文向量的义项分类.在9个汉语高频多义词的开放和封闭测试中均取得了突出的成绩(封闭测试平均正确率为96.31% ,开放测试平均正确率为92.98%),验证了该方法的有效性.

原文链接:http://www.cqvip.com//QK/94913X/200106/5281723.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:cqvip 自然语言 学习方法 机器学习 HTML 词义消歧 向量空间模型 义项矩阵 自然语言理解 有导机器学习

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-22 13:49