楼主: DL-er
1201 1

关于AdaBoost有效性的分析 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2017-10-27 13:40:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:机器学习领域,弱学习定理指明只要能够寻找到比Bagging.随机猜测略好的弱学习算法,则可以通过一定方式,构造出任意误差精度的强学习算法.基于该理论下最常用的方法有AdaBoost和AdaBoost和Bagging的误差分析还不统一;AdaBoost使用的训练误差并不是真正的训练误差,而是基于样本权值的一种误差,是否合理需要解释;确保AdaBoost有效的条件也需要有直观的解释以便使用.在调整Bagging错误率并采取加权投票法后,对AdaBoost和Bagging的算法流程和误差分析进行了统一,在基于大数定理对弱学习定理进行解释与证明基础之上,对AdaBoost的有效性进行了分析.指出AdaBoost采取的样本权值调整策略其目的是确保正确分类样本分布的均匀性,其使用的训练误差与真正的训练误差概率是相等的,并指出了为确保AdaBoost的有效性在训练弱学习算法时需要遵循的原则,不仅对AdaBoost的有效性进行了解释,还为构造新集成学习算法提供了方法.还仿照AdaBoost对Bagging的训练集选取策略提出了一些建议.

原文链接:http://www.cqvip.com//QK/94913X/200810/28409775.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:adaboost boost 有效性 abo bagging 机器学习 弱学习定理 大数定理 AdaBoost Bagging

沙发
tianwk 发表于 2020-5-15 18:16:31
thanks for sharing

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-26 03:42