楼主: AIworld
639 0

数据挖掘与非正常日的负荷预测 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1434
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2017-10-28 16:40:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:提高非正常日的负荷预测精度是当前负荷预测工作的难点。文中提出了一种基于知识库的事先判别突变并做出适当处理的预测流程,介绍了利用数据挖掘的决策树技术建立知识库的方法,并给出了几种典型的非正常日修正模型。最后,通过对长时期负荷预测数据的统计分析,说明了新方法的有效性和实用性。

原文链接:http://www.cqvip.com//QK/91993X/200403/9107525.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:数据挖掘 负荷预测 非正常 cqvip 学术交流 负荷预测 数据挖掘 决策树 知识库 非正常日

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-6 14:25