楼主: 人工智能-AI
989 0

基于贝叶斯网络的航班保障服务时间动态估计 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2017-10-30 19:20:04 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对航班保障服务时间估计的问题,考虑到航班保障服务流程的特殊性、复杂性以及影响因素的不确定性,提出了一种基于贝叶斯网络(BN)的航班保障服务时间估计模型。该模型把航空领域的专家知识与历史数据的机器学习相结合,使用贝叶斯网络的增量学习特性动态地调整BN模型,使其适应新的变化,进而不断更新航班保障服务时间的估计值。使用国内某大型枢纽机场信息系统内提取的数据,通过期望最大化(EM)方法对模型进行训练,得到了测试结果。实验结果分析与模型评价表明,所提方法能有效估计航班保障服务时间且具有较高的准确度。敏感性分析表明,航班到达时段的航班密度对航班保障服务时间影响最强。

原文链接:http://www.cqvip.com//QK/94832X/201701/671036841.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:贝叶斯网络 贝叶斯网 贝叶斯 cqvip 敏感性分析 航班保障服务 机器学习 贝叶斯网络 增量学习 期望最大化

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-4 12:52