楼主: a智多星
649 0

一种基于向量夹角的k近邻多标记文本分类算法 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2017-12-27 21:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:在多标记学习中,一个示例可以有多个概念标记。学习系统的目标是通过对由多标记样本组成的训练集进行学习,以尽可能正确地预测未知样本所对应的概念标记集。k近邻算法已被应用到多标记学习中,该算法将测试示例转化为多维向量,根据其k个近邻样本的标记向量来确定该测试示例的标记向量。传统的k近邻算法是基于向量的空间距离来选取近邻,而在自然语言处理中,文本间的相似度常用文本向量的夹角来表示,所以本文将文本向量间的夹角关系作为选取k近邻的标准并结合k近邻算法提出了一种多标记文本学习算法。实验表明,该算法在文档分类的准确率上体现出较好的性能。

原文链接:http://www.cqvip.com//QK/92817X/200804/27038431.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:分类算法 cqvip 自然语言 语言处理 学习系统 机器学习 多标记学习 文本分类

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-5 16:41