楼主: AIworld
752 0

稀疏分层概率自组织图实例迁移学习方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1434
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2017-12-29 04:20:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对基于实例的迁移学习在关联多源异构领域数据时遇到的数据颗粒度不匹配问题,以单领域分层概率自组织图(Hi PSOG)聚类方法为基础,提出一种具有迁移学习能力的稀疏化非监督分层概率自组织图(TSHi PSOG)方法。首先,在源领域和目标领域分别基于概率混合多变量高斯分布生成分层自组织模型以便在多领域中分别提取不同粒度的表示向量,并用稀疏图方法通过概率准则控制模型增长;其次,利用最大信息系数(MIC),在具有富信息的源领域中寻找与目标领域表示向量最相似的表示向量,并利用这些源领域表示向量的类别标签细化目标领域数据分类;最后,在国际通用分类数据集20新闻组数据集和垃圾邮件检测数据集上进行了实验,结果表明算法可以利用源领域的有用信息辅助目标领域的分类问题,并使分类准确率最高提高约15.26%和9.05%;对比其他经典迁移学习方法,通过稀疏分层可以挖掘不同颗粒度的表示向量,分类准确率最高提高约4.48%和4.13%。

原文链接:http://www.cqvip.com//QK/94832X/201603/668074244.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:学习方法 自组织 cqvip HTML 交流学习 机器学习 迁移学习 非监督学习 分层算法 稀疏图方法

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-20 17:41